

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE OUTCOMES (COs)

B.Tech. II Year I Sem R18 Syllabus Mechanical Engineering

Course Code	Course Title / Name	Course Outcomes
		At the end of this course, each student should be
		able to:
		CO1: Formulate and solve problems involving
		random variables and apply statistical methods
MA301BS	Probability and Statistics	for analysing experimental data.
1111501105	& Complex Variables	CO2: Analyse the complex function with reference to
		their analyticity, integration using Cauchy's
		integral and residue theorems.
		CO3: Taylor's and Laurent's series expansions of
		complex function.
	Mechanics of Solids	At the end of this course, each student should be
		able to:
		CO1: Analyze the behavior of the solid bodies
		subjected to various types of loading;
		CO2: Apply knowledge of materials and structural
		elements to the analysis of simple structures;
		CO3: Undertake problem identification, formulation
ME302PC		and solution using a range of analytical
		methods;
		CO4: Analyze and interpret laboratory data relating
		to behavior of structures and the materials
		they are made of, and undertake associated
		laboratory work individually and in teams.
		CO5: Expectation and capacity to undertake lifelong
		learning

		At the and of this course, each student should be
		At the end of this course, each student should be able to:
		At the end of the course, the student should be able
		to Understand and differentiate between different
ME305PC	Thermodynamics	thermodynamic systems and processes. Understand
		and apply the laws of Thermodynamics to different
		types of systems undergoing various processes and
		to perform thermodynamic analysis. Understand and
		analyze the Thermodynamic cycles and evaluate
		performance parameters.
		At the end of this course, each student should be
		able to:
	Production Technology	Understanding the properties of moulding sands and
ME306PC	Lab	pattern making. Fabricate joints using gas welding
		and arc welding. Evaluate the quality of welded
		joints. Basic idea of press working tools and
		performs moulding studies on plastics.
		At the end of this course, each student should be
		able to:
		CO1: Preparation of engineering and working
		drawings with dimensions and bill of material
		during design and development. Developing
		assembly drawings using part drawings of
	Machine Drawing Practice	machine components.
		CO2: Conventional representation of materials,
		common machine elements and parts such as
		screws, nuts, bolts, keys, gears, webs, ribs.
ME307PC		CO3: Types of sections – selection of section planes
		and drawing of sections and auxiliary sectional
		views. Parts not usually sectioned.
		CO4: Methods of dimensioning, general rules for
		sizes and placement of dimensions for holes,
		centers, curved and tapered features.
		CO5: Title boxes, their size, location and details -
		common abbreviations and their liberal usage
		CO6: Types of Drawings – working drawings for
		machine parts.

		At the end of this course, each student should be
		able to:
		The Primary focus of the Metallurgy and Material science program is to provide undergraduates with a
		fundamental knowledge based associated materials
	Material Science and	properties, and their selection and application. Upon
ME308PC	Mechanics of Solids Lab	graduation, students would have acquired and
		developed the necessary background and skills for
		successful careers in the materials-related
		industries. Furthermore, after completing the
		program, the student should be well prepared for
		management positions in industry or continued
		education toward a graduate degree.
	Constitution of India	At the end of this course, each student should be able to:
		CO1 : Able to understand historical background of the constitutional making and its importance
		for building a democratic India, the structure
		of Indian government, the structure of state
		government, the local Administration.
		CO2: Able to apply the knowledge on directive
		principle of state policy, the knowledge in
		strengthening of the constitutional
*MC309		institutions like CAG, Election Commission
		and UPSC for sustaining democracy.
		CO3: Able to analyze the History, features of Indian
		constitution, the role Governor and Chief
		Minister, role of state election commission,
		the decentralization of power between
		central, state and local self-government.
		CO4: Able to evaluate Preamble, Fundamental
		Rights and Duties, Zilla Panchayat, block level
		organization, various commissions of viz
		SC/ST/OBC and women.

Course Code	Course Title / Name	Course Outcomes
EE401ES	Basic Electrical and Electronics Engineering	 At the end of this course, each student should be able to: CO1: To analyze and solve electrical circuits using network laws and theorems. CO2: To understand and analyze basic Electric and Magnetic circuits CO3: To study the working principles of Electrical Machines CO4: To introduce components of Low Voltage Electrical Installations CO5: To identify and characterize diodes and various types of transistors.
ME402PC	Kinematics of Machinery	At the end of this course, each student should be able to: The main purpose is to give an idea about the relative motions obtained in all the above type of components used in mechanical Engineering.
ME403PC	Thermal Engineering - I	At the end of this course, each student should be able to: At the end of the course, the student should be able to evaluate the performance of IC engines and compressors under the given operating conditions. Apply the laws of Thermodynamics to evaluate the performance of Refrigeration and air-conditioning cycles. Understand the functionality of the major components of the IC Engines and effects of operating conditions on their performance
ME404PC	Fluid Mechanics and Hydraulic Machines	 At the end of this course, each student should be able to: CO1: Able to explain the effect of fluid properties on a flow system. CO2: Able to identify type of fluid flow patterns and describe continuity equation. CO3: To analyze a variety of practical fluid flow and measuring devices and utilize Fluid Mechanics principles in design.

B.Tech. II Year II Sem R18 Syllabus Mechanical Engineering

		CO4: To select and analyze an appropriate turbine
		with reference to given situation in power plants.
		C05: To estimate performance parameters of a given
		Centrifugal and Reciprocating pump.
		CO6: Able to demonstrate boundary layer concepts.
		At the end of this course, each student should be
		able to:
		CO1: To identify various elements and their purpose
		in typical instruments, to identify various errors that would occur in instruments.
MEAGEDC	Instrumentation and	CO2: Analysis of errors so as to determine correction
ME405PC	Control Systems	factors for each instrument.
	-	CO3: To understand static and dynamic
		characteristics of instrument and should be
		able to determine loading response time.
		CO4: For given range of displacement should be able
		to specify transducer, it accurate and loading
		time of that transducer.
	Basic Electrical and Electronics Engineering Lab	At the end of this course, each student should be
		able to:
		C01: To analyze and solve electrical circuits using
		network laws and theorems.
		CO2: To understand and analyze basic Electric and
		Magnetic circuits
ME406PC		CO3: To study the working principles of Electrical
		Machines
		CO4: To introduce components of Low Voltage
		Electrical Installations
		C05: To identify and characterize diodes and various
		types of transistors.
		At the end of this course, each student should be
		able to:
		CO1: Able to explain the effect of fluid properties on
ME407DC	Fluid Mechanics and	a flow system.
ME407PC	Hydraulic Machines Lab	CO2: Able to identify type of fluid flow patterns and
		describe continuity equation.
		CO3: To analyze a variety of practical fluid flow and
		measuring devices and utilize fluid mechanics
		5

		principles in design.
		CO4: To select and analyze an appropriate turbine
		with reference to given situation in power
		plants.
		CO5: To estimate performance parameters of a given
		Centrifugal and Reciprocating pump.
		CO6: Able to demonstrate boundary layer concepts
		At the end of this course, each student should be
		able to:
		At the end of the course, the student will be able to
ME400DC	Instrumentation and	Characterize and calibrate measuring devices.
ME408PC	Control Systems Lab	Identify and analyze errors in measurement. Analyze
		measured data using regression analysis. Calibration
		of Pressure Gauges, temperature, LVDT, capacitive
		transducer, rotameter.
		At the end of this course, each student should be
		able to:
		At the end of this course, each student should be
		able to:
		CO1: Students will have developed a better
	Gender Sensitization Lab	understanding of important issues related to
		gender in contemporary India.
		CO2: Students will be sensitized to basic
		dimensions of the biological, sociological,
		psychological and legal aspects of gender.
		This will be achieved through discussion of
		materials derived from research, facts,
*MC409		everyday life, literature and film.
		CO3: Students will attain a finer grasp of how
		gender discrimination works in our society and how to counter it.
		CO4: Students will acquire insight into the
		gendered division of labour and its relation to
		politics and economics.
		CO5: Men and women students and professionals
		will be better equipped to work and live
		together as equals.
		CO6: Students will develop a sense of appreciation
		of women in all walks of life.

CO7: Through providing accounts of studies and
movements as well as the new laws that
provide protection and relief to women, the
textbook will empower students to understand
and respond to gender violence

B.Tech. III Year I Sem R18 Syllabus Mechanical Engineering

Course Code	Course Title / Name	Course Outcomes
		At the end of this course, each student should be
		able to:
		The study of KOM & DOM are necessary to have an
ME501PC	Dynamics of Machinery	idea while designing the various machine members
		like shafts, bearings, gears, belts & chains and
		various I.C. Engine Components & Machine tool
		parts.
		At the end of this course, each student should be
		able to:
		CO1: The student acquires the knowledge about the
		principles of design, material selection,
		component behavior subjected to loads, and
ME502PC	Design of Machine	criteria of failure.
MESUZI C	Members-I	CO2: Understands the concepts of principal stresses,
		stress concentration in machine members and
		fatigue loading.
		CO3: Design on the basis of strength and rigidity and
		analyze the stresses and strains induced in a
		machine element.
		At the end of this course, each student should be
		able to:
	Metrology & Machine Tools	CO1: Identify techniques to minimize the errors in
		measurement.
		CO2: Identify methods and devices for measurement
		of length, angle, gear & thread parameters,
ME503PC		surface roughness and geometric features of parts.
		CO3: Understand working of lathe, shaper, planer,
		drilling, milling and grinding machines.
		CO4: Comprehend speed and feed mechanisms of
		machine tools.
		CO5: Estimate machining times for machining
		operations on machine tools
		At the end of this course, each student should be
SM504MS	Business Economics &	able to:
	Financial Analysis	The students will understand the various Forms of
		Business and the impact of economic variables on

		the During on The Deviced Could Dalating Could
		the Business. The Demand, Supply, Production, Cost,
		Market Structure, Pricing aspects are learnt. The
		Students can study the firm's financial position by
		analysing the Financial Statements of a Company.
		At the end of this course, each student should be
		able to:
		CO1: Develop state – space diagrams based on the
		schematic diagrams of process flow of steam
		and gas turbine plants
		CO2: Apply the laws of Thermodynamics to analyze
		thermodynamic cycles
ME505PC	Thermal Engineering-II	CO3: Differentiate between vapour power cycles and gas power cycles
		CO4: Infer from property charts and tables and to
		apply the data for the evaluation of
		performance parameters of the steam and gas
		turbine plants
		CO5: Understand the functionality of major
		components of steam and gas turbine plants
		and to do the analysis of these components
		At the end of this course, each student should be
	Operations Research	able to:
ME506PC		Understanding the problem, identifying variables &
		constants, Formulation of optimization model and
		applying appropriate optimization technique
		At the end of this course, each student should be
	Thermal Engineering Lab	able to:
		CO1: Appreciate the practical ways to find calorific
		values of fuel.
		CO2: Understand the various components and
		mechanisms of I. C. Engines. Appreciate the
MEEARDO		Mechanism of ports /Valves functioning in 2-
ME507PC		stroke petrol /Diesel engine.
		CO3: Evaluating the performance characteristics of
		single cylinder petrol engine at different loads
		and single cylinder diesel engine at different
		loads and draw the heat balance sheet.
		CO4: Understand the method of finding the indicated
		power of individual cylinders of an engine by

		using morse test.
		CO5: Understand the method of evaluating the co
		efficient of performance of refrigerator.
		CO6: Understand the method of finding the thermal
		conductivity of material.
		At the end of this course, each student should be
		able to:
		CO1: Perform plain turning, step turning and
		Grooving on a circular rod
		CO2: Perform the step turning and taper turning on a circular rod
	Motrology 9 Machina	CO3: Perform thread cutting and knurling on a
ME508PC	Metrology & Machine	circular C.S rod and using the lathe machine
	Tools Lab	CO4: Drill a hole and perform tapping once given work piece.
		CO5: Slotting operation on a given specimen
		CO6: Surface finish of given work piece
		CO7: Shaping of square block, V- groove
		CO8: Measure the length and diameter using vernier
		calipers
		CO9: Determine angle of given specimen
		At the end of this course, each student should be
		able to:
		CO1: Understand types of motion
	Kinematics & Dynamics	CO2: Analyze forces and torques of components in
ME509PC	Lab	linkages
		CO3: Understand static and dynamic balance
		CO4: Understand forward and inverse kinematics of
		open-loop mechanisms
		At the end of this course, each student should be
		able to:
*MC510		CO1: Identify different types of Intellectual
		Properties (IPs), the right of ownership,
	Intellectual Property	scope of protection as well as the ways to
	Rights	create and to extract value from IP.
		CO2: Recognize the crucial role of IP in
		organizations of different industrial sectors
		for the purposes of product and technology
		development.
		development.

CO3: Identify activities and constitute IP
infringements and the remedies available to
the IP owner and describe the precautious
steps to be taken to prevent infringement of
proprietary rights in products and technology
development.
CO4: Be familiar with the processes of Intellectual
Property Management (IPM) and various
approaches for IPM and conducting IP and
IPM auditing and explain how IP can be
managed as a strategic resource and suggest
IPM strategy.
CO5: Be able to anticipate and subject to critical
analysis arguments relating to the
development and reform of intellectual
property right institutions and their likely
impact on creativity and innovation.
CO6: Be able to demonstrate a capacity to identify,
apply and assess ownership rights and
marketing protection under intellectual
property law as applicable to information,
ideas, new products and product marketing;

Course Code	Course Title / Name	Course Outcomes
ME601PC	Design of Machine Members-II	At the end of this course, each student should be able to: CO1: Knowledge about journal bearing design using
		 different empirical relations. CO2: Estimation of life of rolling element bearings and their selection for given service conditions. CO3: Acquaintance with design of the components as per the standard, recommended procedures which is essential in design and development of machinery in industry.
ME602PC	Heat Transfer	 At the end of this course, each student should be able to: CO1: Understand the basic modes of heat transfer CO2: Compute one dimensional steady state heat transfer with and without heat generation CO3: Understand and analyze heat transfer through extended surfaces CO4: Understand one dimensional transient conduction heat transfer CO5: Understand concepts of continuity, momentum and energy equations CO6: Interpret and analyze forced and free convective heat transfer CO7: Understand the principles of boiling, condensation and radiation heat transfer CO8: Design of heat exchangers using LMTD and NTU methods
ME603PC	CAD & CAM	At the end of this course, each student should be able to: Understand geometric transformation techniques in CAD. Develop mathematical models to represent curves and surfaces. Model engineering components using solid modeling techniques. Develop programs for CNC to manufacture industrial components. To understand the application of computers in various

B.Tech. III Year II Sem R18 Syllabus Mechanical Engineering

		aspects of Manufacturing viz., Design, Proper planning, Manufacturing cost, Layout & Material Handling system.
		At the end of this course, each student should be
		able to:
	Professional Elective – I	CO1: Understand the basic techniques of
ME611PE	Unconventional Machining	Unconventional Machining processes modeling
	Processes	CO1: Estimate the material removal rate and cutting
		force, in an industrially useful manner, for
		Unconventional Machining processes.
		At the end of this course, each student should be
		able to:
		At the end of the course, the student will be able to,
		understand basic motions involved in a machine tool,
MEGADE	Professional Elective – I	design machine tool structures, design and analyze
ME612PE	Machine Tool Design	systems for specified speeds and feeds, select
		subsystems for achieving high accuracy in
		machining, understand control strategies for
		machine tool operations and apply appropriate
		quality tests for quality assurance.
		At the end of this course, each student should be
		able to:
	Professional Elective – I Production Planning & Control	At the end of the course, the student will be able to
		understand production systems and their
		characteristics. Evaluate MRP and JIT systems
ME613PE		against traditional inventory control systems.
MLOIJIL		Understand basics of variability and its role in the
	control	performance of a production system. Analyze
		aggregate planning strategies. Apply forecasting and
		scheduling techniques to production systems.
		Understand theory of constraints for effective
		management of production systems.
	Open Elective - I	
		At the end of this course, each student should be
		able to:
ME604PC	Finite Element Methods	At the end of the course, the student will be able to,
		Apply finite element method to solve problems in
		solid mechanics, fluid mechanics and heat transfer.
		Formulate and solve problems in one dimensional

		structures including trusses, beams and frames.
		Formulate FE characteristic equations for two
		dimensional elements and analyze plain stress, plain
		strain, axisymmetric and plate bending problems.
		ANSYS, ABAQUS, NASTRAN, etc.
		At the end of this course, each student should be
		able to:
		CO1: Perform steady state conduction experiments
		to estimate thermal conductivity of different
		materials
		CO2: Perform transient heat conduction experiment
		CO3: Estimate heat transfer coefficients in forced
ME605PC	Heat Transfer Lab	convection, free convection, condensation and
		correlate with theoretical values
		CO4: Obtain variation of temperature along the
		length of the pin fin under forced and free
		convection
		CO5: Perform radiation experiments: Determine
		surface emissivity of a test plate and Stefan-
		Boltzmann's constant and compare with
		theoretical value
	CAD & CAM Lab	At the end of this course, each student should be
ME606PC		able to:
		To understand the analysis of various aspects in of
		manufacturing design
		At the end of this course, each student should be
		able to:
		CO1: To improve fluency in English through a well
		developed vocabulary and enable them to
		listen at normal conservational speed by
		educated English speakers and respond
EN608HS	Advanced Communication Skills lab	appropriately in different socio cultural and
		professional context
		CO2: Further, they would be required to
		communicate their ideas relevantly and
		coherently in writing
		CO3: To prepare all the students for their
		placements
		CO4: Learn to overcome stage fear and make

		presentations with ease
		CO5: Learn how to pronounce words using the
		rules they have been taught
		At the end of this course, each student should be
		able to:
		Based on this course, the Engineering graduate will
*MC609	Environmental Science	understand /evaluate / develop technologies on the
		basis of ecological principles and environmental
		regulations which in turn helps in sustainable
		development

Course Code	Course Title / Name	Course Outcomes
ME701PC	CAD/CAM	At the end of this course, each student should be able to: Understand geometric transformation techniques in CAD. Develop mathematical models to represent curves and surfaces .Model engineering components using solid modeling techniques. Develop programs for CNC to manufacture industrial components. To understand the application of computers in various aspects of Manufacturing viz., Design, Proper planning, Manufacturing cost, Layout & Material Handling system.
		At the end of this course, each student should be
ME702PC	Instrumentation and Control System	able to: To identify various elements and their purpose in typical instruments, to identify various errors that would occur in instruments. Analysis of errors so as to determine correction factors for each an instrument. To understand static and dynamic characteristics of instrument and should be able to determine loading response time. For given range of displacement should be able to specify transducer, it accurate and loading time of that transducer.
	Professional Elective – II Composite materials	At the end of this course, each student should be
ME721PE		able to: The student will apply the concepts learnt during the
		course to design, and apply a composite material for
		a specific application.
ME722PE	Professional Elective – II Industrial Management	 At the end of this course, each student should be able to: CO1: Choose, prepare, interpret and use cost estimates as a basis for the different situations in an industrial company. CO2: Interpret financial statements and other financial reports of industrial companies,

B.Tech. IV Year I Sem R16 Syllabus Mechanical Engineering

		 including the income statement, the balance sheet, the cash flow statement and key measures. CO3: Explain how strategic planning, management, management control, entrepreneurship, organization, production and learning works in an industrial company. CO4: Explain how the industrial company markets and price it's products. CO5: Explain how the company deal with it's environment.
ME723PE	Professional Elective – II Power Plant Engineering	 At the end of this course, each student should be able to: CO1: Understand the concept of Rankine cycle. CO2: Understand working of boilers including water tube,fire tube and high pressure boilers and determine efficiencies. CO3: Analyze the flow of steam through nozzles CO4: Evaluate the performance of condensers and steam turbines CO5: Evaluate the performance of gas turbines
ME724PE	Professional Elective – II Operations Research	At the end of this course, each student should be able to: Understanding the problem, identifying variables & constants, formulas of optimization model and applying appropriate optimization Technology.
ME731PE	Professional Elective– III Engineering Tribology	 At the end of this course, each student should be able to: CO1: Understanding friction characteristics in journal bearings. CO2: Knowledge about different theories of lubrication to reduce friction and wear.
ME732PE	Professional Elective– III Computational Fluid Dynamics	At the end of this course, each student should be able to: Outcome 1: Provide the student with a significant level of experience in the use of modern CFD software for the analysis of complex fluid-flow systems.

	simplify a real fluid-flow system into a simplified model problem, to select the proper governing equations for the physics involved in the system, to solve for the flow, to investigate the fluid-flow behavior, and to understand the results. 3.2 The student will demonstrate the ability to
	 generate an adequate mesh for an accurate solution, select appropriate solvers to obtain a flow solution, and visualize the resulting flow field. 1.2 The student will demonstrate the ability to analyze a flow field to determine various quantities of interest, such as flow rates, heat fluxes, pressure drops, losses, etc., using flow visualization and analysis tools. Outcome 2: Improve the student's understanding of the basic principles of fluid mechanics. 2.1 The student will demonstrate an ability to recognize the type of fluid flow that is occurring in a particular physical system and to use the appropriate model equations to investigate the flow. 2.2 The student will demonstrate an ability to describe various flow features in terms of appropriate fluid mechanical principles and force balances. Outcome 3: Improve the student's research and communication skills using a self-directed, detailed study of a complex fluid-flow problem and to communicate the results in written form. 3.1 The student will demonstrate the ability to

ME741PEProfessional Elective- IU Professional Elective- IU Mechanical Vibrationsrobot. Programme a robot to perform tasks in industrial applications. Design intelligent robots using sensors.ME741PEProfessional Elective- IU CNC TechnologyAt the end of this course, each student should be able to: At the end of this course, each student should be able to: At the end of this course, each student should be able to: At the end of the course, the student will be able to, Understand the causes and effects of vibration in mechanical systems. Develop schematic models for physical systems and formulate governing equations of motion. Understand the role of damping, stiffness and inertia in mechanical systems and compute critical speeds. Analyze and design machine supporting structures, vibration isolators and absorbers.ME742PEProfessional Elective- IV Turbo MachinesAt the end of this course, each student should be able to: At the end of this course, each student should be able to: C01: Ability to design and calculate different parameters for turbo machines C02: Prerequisite to CFD and Industrial fluid power Courses. C03: Ability to formulate design criteria C04: Ability to mechanical should be able to: C01: Ability to mechanical working principles of currently available micro sensors, actuators, and motors, valves, pumps, and fluidics used in Microsystems. C02: Students will be able to apply scaling laws that are used extensively in the conceptual design of this course and systems			manipulators. Analyze forces in links and joints of a
ME742PEProfessional Elective-III CNC TechnologyAt the end of this course, each student should be able to: At the end of this course, one should be able to select tooling method, control mechanism and do part programming for a given product.ME741PEProfessional Elective-IV Mechanical VibrationsAt the end of this course, each student should be able to: At the end of this course, each student will be able to, Understand the causes and effects of vibration in mechanical systems. Develop schematic models for physical systems and formulate governing equations of motion. Understand the role of damping, stiffness and inertia in mechanical systems and compute critical speeds. Analyze and design machine supporting structures, vibration isolators and absorbers.ME742PEProfessional Elective-IV Turbo MachinesAt the end of this course, each student should be able to: At the end of this course, each student should be able to: CO1: Ability to design and calculate different parameters for turbo machines CO2: Prerequisite to CFD and Industrial fluid power Courses. CO3: Ability to formulate design criteria CO4: Ability to understand thermodynamics and kinematics behind turbo machinesME743PEProfessional Elective-IV MEMSAt the end of this course, each student should be able to: CO1: Students will be able to understand working principles of currently available micro sensors, atuators, and motors, valves, pumps, and fluidics used in Microsystems. CO2: Students will be able to apply scaling laws that are used extensively in the conceptual			robot. Programme a robot to perform tasks in
ME734PEProfessional Elective-III CNC TechnologyAt the end of this course, each student should be able to: At the end of this course, one should be able to select tooling method, control mechanism and do part programming for a given product.ME741PEProfessional Elective-IV Mechanical VibrationsAt the end of this course, each student will be able to, Understand the causes and effects of vibration in mechanical systems. Develop schematic models for physical systems and formulate governing equations of motion. Understand the role of damping, stiffness and inertia in mechanical systems and compute critical speeds. Analyze and design machine supporting structures, vibration isolators and absorbers.ME742PEProfessional Elective-IV Turbo MachinesAt the end of this course, each student should be able to: CO1: Ability to design and calculate different parameters for turbo machines CO2: Prerequisite to CFD and Industrial fluid power Courses.ME743PEProfessional Elective-IV Turbo MachinesAt the end of this course, each student should be able to: CO1: Ability to inderstand thermodynamics and kinematics behind turbo machinesME743PEProfessional Elective-IV MEMSAt the end of this course, each student should be able to: CO1: Students will be able to understand working principles of currently available micro sensors, actuators, and motors, valves, pumps, and fluidics used in Microsystems. CO2: Students will be able to apply scaling laws that are used extensively in the conceptual			industrial applications. Design intelligent robots
ME734PEProfessional Elective-III CNC TechnologyAt the end of this course, each student should be able to: At the end course, one should be able to select tooling method, control mechanism and do part programming for a given product.ME741PEProfessional Elective-IV Mechanical VibrationsAt the end of this course, each student will be able to. At the end of the course, the student will be able to. Understand the causes and effects of vibration in mechanical systems. Develop schematic models for physical systems and formulate governing equations of motion. Understand the role of damping, stiffness and inertia in mechanical systems and compute critical speeds. Analyze and design machine supporting structures, vibration isolators and absorbers.ME742PEProfessional Elective-IV Turbo MachinesAt the end of this course, each student should be able to: At the end of this course, each student should be able to: CO1: Ability to design and calculate different parameters for turbo machinesME743PEProfessional Elective-IV Turbo MachinesAt the end of this course, each student should be able to: CO1: Ability to formulate design criteria CO2: Prerequisite to CFD and Industrial fluid power Courses.ME743PEProfessional Elective-IV MEMSAt the end of this course, each student should be able to: CO1: Students will be able to understand working principles of currently available micro sensors, actuators, and motors, valves, pumps, and fluidics used in Microsystems. CO2: Students will be able to apply scaling laws that are used extensively in the conceptual			using
ME734PEProfessional Elective-III CNC Technologyable to: At the end course, one should be able to select tooling method, control mechanism and do part programming for a given product.ME741PEProfessional Elective-IV Mechanical VibrationsAt the end of this course, each student should be able to: At the end of the course, the student will be able to, Understand the causes and effects of vibration in mechanical systems. Develop schematic models for physical systems and formulate governing equations of motion. Understand the role of damping, stiffness and inertia in mechanical systems Analyze rotating and reciprocating systems and compute critical speeds. Analyze and design machine supporting structures, vibration isolators and absorbers.ME742PEProfessional Elective-IV Turbo MachinesAt the end of this course, each student should be able to: C01: Ability to design and calculate different parameters for turbo machinesME743PEProfessional Elective-IV Turbo MachinesAt the end of this course, each student should be able to: C01: Ability to design and calculate different parameters for turbo machinesME743PEProfessional Elective-IV MEMSAt the end of this course, each student should be able to: C01: Ability to understand thermodynamics and kinematics behind turbo machinesME743PEProfessional Elective-IV MEMSAt the end of this course, each student should be able to: C01: Students will be able to understand working principles of currently available micro sensors, actuators, and motors, valves, pumps, and fluidics used in Microsystems. C02: Students will be able to apply scaling laws that are used extensively in the conceptual			sensors.
ME734PEProfessional Elective-III CNC TechnologyAt the end course, one should be able to select tooling method, control mechanism and do part programming for a given product.ME741PEProfessional Elective-IV Mechanical VibrationsAt the end of this course, each student should be able to: At the end of the course, the student will be able to, Understand the causes and effects of vibration in mechanical systems. Develop schematic models for physical systems and formulate governing equations of motion. Understand the role of damping, stiffness and inertia in mechanical systems Analyze rotating and reciprocating systems and compute critical speeds. Analyze and design machine supporting structures, vibration isolators and absorbers.ME742PEProfessional Elective-IV Turbo MachinesAt the end of this course, each student should be able to: CO1: Ability to design and calculate different parameters for turbo machines CO2: Prerequisite to CFD and Industrial fluid power Courses. CO3: Ability to understand thermodynamics and kinematics behind turbo machinesME743PEProfessional Elective-IV MEMSAt the end of this course, each student should be able to: CO1: Students will be able to understand working principles of currently available micro sensors, actuators, and motors, valves, pumps, and fluidics used in Microsystems. CO2: Students will be able to apply scaling laws that are used extensively in the conceptual			At the end of this course, each student should be
ME734PECNC TechnologyAt the end course, one should be able to select tooling method, control mechanism and do part programming for a given product.ME741PEProfessional Elective-IV Mechanical VibrationsAt the end of this course, each student should be able to: At the end of the course, the student will be able to, Understand the causes and effects of vibration in mechanical systems. Develop schematic models for physical systems and formulate governing equations of motion. Understand the role of damping, stiffness and inertia in mechanical systems Analyze rotating and reciprocating systems and compute critical speeds. Analyze and design machine supporting structures, vibration isolators and absorbers.ME742PEProfessional Elective-IV Turbo MachinesAt the end of this course, each student should be able to: C01: Ability to design and calculate different parameters for turbo machinesME743PEProfessional Elective-IV MEMSAt the end of this course, each student should be able to: C01: Ability to formulate design criteria C04: Ability to understand thermodynamics and kinematics behind turbo machinesME743PEProfessional Elective-IV MEMSAt the end of this course, each student should be able to: C01: Students will be able to understand working principles of currently available micro sensors, actuators, and motors, valves, pumps, and fluidics used in Microsystems. C02: Students will be able to apply scaling laws that are used extensively in the conceptual		Drofossional Flastiva III	able to:
ME741PEProfessional Elective- IV Mechanical Vibrationstooling method, control mechanism and do part programming for a given product.ME741PEProfessional Elective- IV Mechanical VibrationsAt the end of this course, each student should be able to: At the end of the course, the student will be able to, Understand the causes and effects of vibration in mechanical systems. Develop schematic models for physical systems and formulate governing equations of motion. Understand the role of damping, stiffness and inertia in mechanical systems and compute critical speeds. Analyze and design machine supporting structures, vibration isolators and absorbers.ME742PEProfessional Elective- IV Turbo MachinesAt the end of this course, each student should be able to: C01: Ability to design and calculate different parameters for turbo machines C02: Prerequisite to CFD and Industrial fluid power Courses. C03: Ability to understand thermodynamics and kinematics behind turbo machinesME743PEProfessional Elective- IV MEMSAt the end of this course, each student should be able to: C01: Students will be able to understand working principles of currently available micro sensors, actuators, and motors, valves, pumps, and fluidics used in Microsystems. C02: Students will be able to apply scaling laws that are used extensively in the conceptual	ME734PE		At the end course, one should be able to select
ME741PEProfessional Elective-IV Mechanical VibrationsAt the end of this course, each student should be able to: At the end of the course, the student will be able to, Understand the causes and effects of vibration in mechanical systems. Develop schematic models for physical systems and formulate governing equations of motion. Understand the role of damping, stiffness and inertia in mechanical systems Analyze rotating and reciprocating systems and compute critical speeds. Analyze and design machine supporting structures, vibration isolators and absorbers.ME742PEProfessional Elective-IV Turbo MachinesAt the end of this course, each student should be able to: C01: Ability to design and calculate different parameters for turbo machines C02: Prerequisite to CFD and Industrial fluid power Courses.ME743PEProfessional Elective-IV Turbo MachinesAt the end of this course, each student should be able to: C01: Ability to design and calculate different parameters for turbo machinesME743PEProfessional Elective-IV MEMSAt the end of this course, each student should be able to: C01: Students will be able to understand working principles of currently available micro sensors, actuators, and motors, valves, pumps, and fluidics used in Microsystems.ME743PEProfessional Elective-IV MEMSAt the end of this course, each student should be able to: C01: Students will be able to apply scaling laws that are used extensively in the conceptual		CNC Technology	tooling method, control mechanism and do part
ME741PEProfessional Elective-IV Mechanical Vibrationsable to: At the end of the course, the student will be able to, Understand the causes and effects of vibration in mechanical systems. Develop schematic models for physical systems and formulate governing equations of motion. Understand the role of damping, stiffness and inertia in mechanical systems Analyze rotating and reciprocating systems and compute critical speeds. Analyze and design machine supporting structures, vibration isolators and absorbers.ME742PEProfessional Elective-IV Turbo MachinesAt the end of this course, each student should be able to: C01: Ability to design and calculate different parameters for turbo machines C02: Prerequisite to CFD and Industrial fluid power Courses. C03: Ability to formulate design criteria C04: Ability to understand thermodynamics and kinematics behind turbo machinesME743PEProfessional Elective-IV MEMSAt the end of this course, each student should be able to: C01: Students will be able to understand working principles of currently available micro sensors, actuators, and motors, valves, pumps, and fluidics used in Microsystems. C02: Students will be able to apply scaling laws that are used extensively in the conceptual			programming for a given product.
ME741PEProfessional Elective- IV Mechanical VibrationsAt the end of the course, the student will be able to, Understand the causes and effects of vibration in mechanical systems. Develop schematic models for physical systems and formulate governing equations of motion. Understand the role of damping, stiffness and inertia in mechanical systems Analyze rotating and reciprocating systems and compute critical speeds. Analyze and design machine supporting structures, vibration isolators and absorbers.ME742PEProfessional Elective- IV Turbo MachinesAt the end of this course, each student should be able to: CO1: Ability to design and calculate different parameters for turbo machinesME742PEProfessional Elective- IV Turbo MachinesAt the end of this course, each student should be able to: CO2: Prerequisite to CFD and Industrial fluid power Courses.ME743PEProfessional Elective- IV MEMSAt the end of this course, each student should be able to: CO1: Ability to understand thermodynamics and kinematics behind turbo machinesME743PEProfessional Elective- IV MEMSAt the end of this course, each student should be able to: CO2: Students will be able to understand working principles of currently available micro sensors, actuators, and motors, valves, pumps, and fluidics used in Microsystems. CO2: Students will be able to apply scaling laws that are used extensively in the conceptual			At the end of this course, each student should be
ME741PEProfessional Elective- IV Mechanical VibrationsUnderstand the causes and effects of vibration in mechanical systems. Develop schematic models for physical systems and formulate governing equations of motion. Understand the role of damping, stiffness and inertia in mechanical systems Analyze rotating and reciprocating systems and compute critical speeds. Analyze and design machine supporting structures, vibration isolators and absorbers.ME742PEProfessional Elective- IV Turbo MachinesAt the end of this course, each student should be able to: C01: Ability to design and calculate different parameters for turbo machines C02: Prerequisite to CFD and Industrial fluid power Courses.ME743PEProfessional Elective- IV MEMSAt the end of this course, each student should be able to: C01: Ability to domulate design criteria C04: Ability to understand thermodynamics and kinematics behind turbo machinesME743PEProfessional Elective- IV MEMSAt the end of this course, each student should be able to: C01: Students will be able to understand working principles of currently available micro sensors, actuators, and motors, valves, pumps, and fluidics used in Microsystems. C02: Students will be able to apply scaling laws that are used extensively in the conceptual			able to:
ME741PEProfessional Elective-IV Mechanical Vibrationsmechanical systems. Develop schematic models for physical systems and formulate governing equations of motion. Understand the role of damping, stiffness and inertia in mechanical systems Analyze rotating and reciprocating systems and compute critical speeds. Analyze and design machine supporting structures, vibration isolators and absorbers.ME742PEProfessional Elective-IV Turbo MachinesAt the end of this course, each student should be able to: C01: Ability to design and calculate different parameters for turbo machines C02: Prerequisite to CFD and Industrial fluid power Courses.ME743PEProfessional Elective-IV MEMSAt the end of this course, each student should be able to: C03: Ability to formulate design criteria C04: Ability to understand thermodynamics and kinematics behind turbo machinesME743PEProfessional Elective-IV MEMSC01: Students will be able to understand working principles of currently available micro sensors, actuators, and motors, valves, pumps, and fluidics used in Microsystems. C02: Students will be able to apply scaling laws that are used extensively in the conceptual			At the end of the course, the student will be able to,
ME741PEProfessional Elective-IV Mechanical Vibrationsphysical systems and formulate governing equations of motion. Understand the role of damping, stiffness and inertia in mechanical systems Analyze rotating and reciprocating systems and compute critical speeds. Analyze and design machine supporting structures, vibration isolators and absorbers.ME742PEProfessional Elective-IV Turbo MachinesAt the end of this course, each student should be able to: C01: Ability to design and calculate different parameters for turbo machinesME742PEProfessional Elective-IV Turbo MachinesAt the end of this course, each student should be able to: C02: Prerequisite to CFD and Industrial fluid power Courses.C03: Ability to formulate design criteria C04: Ability to understand thermodynamics and kinematics behind turbo machinesME743PEProfessional Elective-IV MEMSAt the end of this course, each student should be able to: C01: Students will be able to understand working principles of currently available micro sensors, actuators, and motors, valves, pumps, and fluidics used in Microsystems. C02: Students will be able to apply scaling laws that are used extensively in the conceptual			Understand the causes and effects of vibration in
ME741PEMechanical Vibrationsphysical systems and formulate governing equations of motion. Understand the role of damping, stiffness and inertia in mechanical systems Analyze rotating and reciprocating systems and compute critical speeds. Analyze and design machine supporting structures, vibration isolators and absorbers.ME742PEProfessional Elective- IV Turbo MachinesAt the end of this course, each student should be able to: CO1: Ability to design and calculate different parameters for turbo machinesME742PEProfessional Elective- IV Turbo MachinesAt the end of this course, each student should be able to: CO2: Prerequisite to CFD and Industrial fluid power Courses.ME743PEProfessional Elective- IV MEMSAt the end of this course, each student should be able to: CO1: Ability to formulate design criteria CO4: Ability to understand thermodynamics and kinematics behind turbo machinesME743PEProfessional Elective- IV MEMSAt the end of this course, each student should be able to: CO1: Students will be able to understand working principles of currently available micro sensors, actuators, and motors, valves, pumps, and fluidics used in Microsystems. CO2: Students will be able to apply scaling laws that are used extensively in the conceptual		Professional Flective- IV	mechanical systems. Develop schematic models for
ME742PEProfessional Elective- IV Turbo MachinesAt the end of this course, each student should be able to: CO1: Ability to design and calculate different parameters for turbo machines CO2: Prerequisite to CFD and Industrial fluid power Courses.ME743PEProfessional Elective- IV Turbo MachinesAt the end of this course, each student should be able to: CO1: Ability to design and calculate different parameters for turbo machines CO2: Prerequisite to CFD and Industrial fluid power Courses.ME743PEProfessional Elective- IV MEMSAt the end of this course, each student should be able to: CO1: Ability to design and calculate different parameters for turbo machines CO2: Prerequisite to CFD and Industrial fluid power Courses. CO3: Ability to formulate design criteria CO4: Ability to understand thermodynamics and kinematics behind turbo machinesME743PEProfessional Elective- IV MEMSAt the end of this course, each student should be able to: CO1: Students will be able to understand working principles of currently available micro sensors, actuators, and motors, valves, pumps, and fluidics used in Microsystems. CO2: Students will be able to apply scaling laws that are used extensively in the conceptual	ME741PE		physical systems and formulate governing equations
ME742PEProfessional Elective-IV ME743PEand reciprocating systems and compute critical speeds. Analyze and design machine supporting structures, vibration isolators and absorbers.ME743PEProfessional Elective-IV Turbo MachinesAt the end of this course, each student should be able to: CO1: Ability to design and calculate different parameters for turbo machines CO2: Prerequisite to CFD and Industrial fluid power Courses.ME743PEProfessional Elective-IV MET43PECO1: Ability to formulate design criteria CO2: Ability to understand thermodynamics and kinematics behind turbo machinesME743PEProfessional Elective-IV MEMSAt the end of this course, each student should be able to: CO1: Students will be able to understand working principles of currently available micro sensors, actuators, and motors, valves, pumps, and fluidics used in Microsystems.CO2: Students will be able to apply scaling laws that are used extensively in the conceptual			of motion. Understand the role of damping, stiffness
ME742PEProfessional Elective-IV Turbo Machinesspeeds. Analyze and design machine supporting structures, vibration isolators and absorbers.ME743PEProfessional Elective-IV Turbo MachinesAt the end of this course, each student should be able to: CO1: Ability to design and calculate different parameters for turbo machines CO2: Prerequisite to CFD and Industrial fluid power Courses. CO3: Ability to formulate design criteria CO4: Ability to understand thermodynamics and kinematics behind turbo machinesME743PEProfessional Elective-IV MEMSAt the end of this course, each student should be able to: CO1: Students will be able to understand working principles of currently available micro sensors, actuators, and motors, valves, pumps, and fluidics used in Microsystems. CO2: Students will be able to apply scaling laws that are used extensively in the conceptual			
ME742PEProfessional Elective-IV Turbo MachinesAt the end of this course, each student should be able to: CO1: Ability to design and calculate different parameters for turbo machinesME743PEProfessional Elective-IV Turbo MachinesCO2: Prerequisite to CFD and Industrial fluid power Courses. CO3: Ability to formulate design criteria CO4: Ability to understand thermodynamics and kinematics behind turbo machinesME743PEProfessional Elective-IV MEMSAt the end of this course, each student should be able to: CO3: Ability to inderstand thermodynamics and kinematics behind turbo machinesME743PECoffCO1: Students will be able to understand working principles of currently available micro sensors, actuators, and motors, valves, pumps, and fluidics used in Microsystems. CO2: Students will be able to apply scaling laws that are used extensively in the conceptual			
ME742PEProfessional Elective-IV Turbo MachinesAt the end of this course, each student should be able to: CO1: Ability to design and calculate different parameters for turbo machinesME743PEProfessional Elective-IV MEMSAt the end of this course, each student should be able to: CO2: Prerequisite to CFD and Industrial fluid power Courses. CO3: Ability to formulate design criteria CO4: Ability to understand thermodynamics and kinematics behind turbo machinesME743PEProfessional Elective-IV MEMSAt the end of this course, each student should be able to: CO1: Students will be able to understand working principles of currently available micro sensors, actuators, and motors, valves, pumps, and fluidics used in Microsystems. CO2: Students will be able to apply scaling laws that are used extensively in the conceptual			
ME742PEable to: CO1: Ability to design and calculate different parameters for turbo machinesME742PEProfessional Elective-IV Turbo MachinesCO2: Prerequisite to CFD and Industrial fluid power Courses.CO3: Ability to formulate design criteria CO4: Ability to understand thermodynamics and kinematics behind turbo machinesME743PEProfessional Elective-IV MEMSAt the end of this course, each student should be able to: CO1: Students will be able to understand working principles of currently available micro sensors, actuators, and motors, valves, pumps, and fluidics used in Microsystems. CO2: Students will be able to apply scaling laws that are used extensively in the conceptual			
ME742PEProfessional Elective- IV Turbo MachinesCO1: Ability to design and calculate different parameters for turbo machinesCO2: Prerequisite to CFD and Industrial fluid power Courses.CO3: Ability to formulate design criteria CO4: Ability to understand thermodynamics and kinematics behind turbo machinesME743PEProfessional Elective- IV MEMSAt the end of this course, each student should be able to: CO1: Students will be able to understand working principles of currently available micro sensors, actuators, and motors, valves, pumps, and fluidics used in Microsystems. CO2: Students will be able to apply scaling laws that are used extensively in the conceptual			
ME742PEProfessional Elective- IV Turbo Machinesparameters for turbo machinesC02: Prerequisite to CFD and Industrial fluid power Courses.CO3: Ability to formulate design criteria CO4: Ability to understand thermodynamics and kinematics behind turbo machinesME743PEProfessional Elective- IV MEMSAt the end of this course, each student should be able to: CO1: Students will be able to understand working principles of currently available micro sensors, actuators, and motors, valves, pumps, and fluidics used in Microsystems.C02: Students will be able to apply scaling laws that are used extensively in the conceptual			
ME742PEProfessional Elective-IV Turbo MachinesCO2: Prerequisite to CFD and Industrial fluid power Courses.CO3: Ability to formulate design criteria CO4: Ability to understand thermodynamics and kinematics behind turbo machinesME743PEProfessional Elective-IV MEMSAt the end of this course, each student should be able to: CO1: Students will be able to understand working principles of currently available micro sensors, actuators, and motors, valves, pumps, and fluidics used in Microsystems.CO2: Students will be able to apply scaling laws that are used extensively in the conceptual			
ME743PE Professional Elective-IV MEMS Professional Elective-IV MEMS CO2: Students will be able to apply scaling laws that are used extensively in the conceptual	METAODE		
ME743PEProfessional Elective- IV MEMSCO3: Ability to formulate design criteria CO4: Ability to understand thermodynamics and kinematics behind turbo machinesME743PEProfessional Elective- IV MEMSAt the end of this course, each student should be able to: CO1: Students will be able to understand working principles of currently available micro sensors, actuators, and motors, valves, pumps, and fluidics used in Microsystems. 	ME/42PE		
ME743PEProfessional Elective- IV MEMSCO4: Ability to understand thermodynamics and kinematics behind turbo machinesME743PEProfessional Elective- IV MEMSAt the end of this course, each student should be able to: CO1: Students will be able to understand working principles of currently available micro sensors, actuators, and motors, valves, pumps, and fluidics used in Microsystems. CO2: Students will be able to apply scaling laws that are used extensively in the conceptual			*
ME743PEProfessional Elective-IV MEMSAt the end of this course, each student should be able to: CO1: Students will be able to understand working principles of currently available micro sensors, actuators, and motors, valves, pumps, and fluidics used in Microsystems. CO2: Students will be able to apply scaling laws that are used extensively in the conceptual			
ME743PE Professional Elective-IV MEMS At the end of this course, each student should be able to: CO1: Students will be able to understand working principles of currently available micro sensors, actuators, and motors, valves, pumps, and fluidics used in Microsystems. CO2: Students will be able to apply scaling laws that are used extensively in the conceptual			
ME743PE Professional Elective-IV MEMS ABLE CO1: Students will be able to understand working principles of currently available micro sensors, actuators, and motors, valves, pumps, and fluidics used in Microsystems. CO2: Students will be able to apply scaling laws that are used extensively in the conceptual			
ME743PE Professional Elective-IV MEMS CO1: Students will be able to understand working principles of currently available micro sensors, actuators, and motors, valves, pumps, and fluidics used in Microsystems. CO2: Students will be able to apply scaling laws that are used extensively in the conceptual			
ME743PE Professional Elective-IV MEMS principles of currently available micro sensors, actuators, and motors, valves, pumps, and fluidics used in Microsystems. CO2: Students will be able to apply scaling laws that are used extensively in the conceptual			
ME743PE MEMS sensors, actuators, and motors, valves, pumps, and fluidics used in Microsystems. CO2: Students will be able to apply scaling laws that are used extensively in the conceptual	ME743PE		
MEMS pumps, and fluidics used in Microsystems. CO2: Students will be able to apply scaling laws that are used extensively in the conceptual			
CO2: Students will be able to apply scaling laws that are used extensively in the conceptual			
that are used extensively in the conceptual			
			design of micro devices and systems.

	Ι	
		Students will be able to differentiate between
		the positive and negative consequences of
		scaling down certain physical quantities that
		are pertinent to Microsystems.
		CO3: Students will be able to use materials for
		common micro components and devices. CO4: Students will be able to choose a
		micromachining technique, such as bulk
		micromachining and surface micromachining
		for a specific MEMS fabrication process.
		C05: Students will be able to understand the basic
		principles and applications of micro
		fabrication processes, such as photolithography
		, ion implantation, diffusion, oxidation, CVD,
		PVD, and etching.
		CO6: Students will be able to consider recent
		advancements in the field of MEMS and devices.
		CO7: Students will be able communicate their
		results and findings orally via formal
		presentations and in writing through reports. At the end of this course, each student should be
		able to:
		C01: Describe various CAD issues for 3D printing
		and rapid prototyping and related operations
		for STL model manipulation.
		CO2: Formulate and solve typical problems on
		reverse engineering for surface
ME744PE	Professional Elective–IV Additive Manufacturing	reconstruction from physical prototype
ML/ HIL	Technology	models through digitizing and spline-based
		surface fitting.
		CO3: Formulate and solve typical problems on
		reverse engineering for surface
		reconstruction from digitized mesh models
		through topological modelling and
		subdivision surface fitting.

		CO4: Explain and summarize the principles and
		key characteristics of additive manufacturing
		technologies and commonly used 3D printing
		and additive manufacturing systems.
		CO5: Explain and summarize typical rapid tooling
		processes for quick batch production of
		plastic and metal parts.
		At the end of this course, each student should be
		able to:
		To be able to understand and handle design
ME703PC	CAD/CAM Lab	problems in a systematic manner. To be able to apply
		CAD in real life applications. To be understand the
		basic principles of different types of analysis.
ME704PC ME705PC	Instrumentation and Control Systems Lab Industry Oriented Mini Project	At the end of this course, each student should beable to:At the end of the course, the student will be able toCharacterize and calibrate measuring devices.Identify and analyze errors in measurement. Analyzemeasured data using regression analysis. Calibrationof Pressure Gauges, temperature, LVDT, capacitivetransducer, rotameter.At the end of this course, each student should beable to:CO1: Formulate a real world problem and developits Requirements.CO2: Student will be exposed to industrial
		awareness CO3: Self learning technologies, methods and/or techniques that contribute to the software solution of the project.
ME706PC	Seminar	 At the end of this course, each student should be able to: CO1: Ability to work in actual working environment. CO2: Ability to utilize technical resources CO3: Ability to write technical documents and give

	oral presentations related to the work
	completed.

Course Code	Course Title / Name	Course Outcomes
	Open Elective – III	
ME851PE	Professional Elective – V Automation in Manufacturing	 At the end of this course, each student should be able to: CO1: Illustrate the basic concepts of automation in machine tools. CO2: Analyze various automated flow lines, Explain assembly systems and line balancing methods. CO3: Describe the importance of automated material handling and storage systems. CO4: Interpret the importance of adaptive control systems, automated inspection systems.
ME852PE	Professional Elective – V Fluid Power System	 At the end of this course, each student should be able to: CO1: Understand the Properties of fluids, Fluids for hydraulic systems. CO2: Governing laws. distribution of fluid power, Design and analysis of typical hydraulic circuits. CO3: Know accessories used in fluid power system, Filtration systems and maintenance of system.
ME853PE	Professional Elective – V Renewable Energy Sources	 At the end of this course, each student should be able to: CO1: Understanding of renewable energy sources CO2: Knowledge of working principle of various energy systems. CO3: Capability to carry out basic design of renewable energy systems.
ME854PE	Professional Elective – V Production Planning and Control	At the end of this course, each student should be able to: Understand production systems and their characteristics. Evaluate MRP and JIT systems against traditional inventory control systems. Understand basics of variability and its role in the

B.Tech. IV Year II Sem R16 Syllabus Mechanical Engineering

		performance of a production system. Analyze
		aggregate planning strategies. Apply forecasting and
		scheduling techniques to production systems.
		Understand theory of constraints for effective
		management of production systems.
		At the end of this course, each student should be
		able to:
		CO1: Gain the knowledge on automobile and its
		types and basic knowledge about engine and
		its Lubrication to the practical problems.
		CO2: Analyze the Type of cooling and new
		technology processes of cooling and ignition
		systems and its trouble shooting of simple
		problems on fuel, ignition, cooling,
ME861PE	Professional Elective-VI	lubrication and electrical systems .
	Automobile Engineering	CO3: Develop an ability to analyze of suspension
		system and braking systems.
		CO4: Analyze new technical challenges and design
		of Power steering systems and new
		technical advancements in the automotive
		industry and braking systems.
		CO5: Gain the knowledge about the Alternative
		fuels used in automobile, performance and
		Emissions of automobile and its control of
		international standards.
		At the end of this course, each student should be
		able to:
		C01: Determined the point of location of applied
ME862PE		load to avoid twisting in thin sections used
		in aerospace applications.
	Professional Elective–VI Advanced Mechanics of	CO2: Understand the concept of distinguish
		between neutral and centroidal axes in
		curved beams.
	Solius	CO3: Understanding the analogy models
		developed for analyzing the non circular
		bars subjected to torsion, and also analyzing
		the stresses developed between rolling
		bodies and stress in three dimensional
		bodies.
ME862PE		 At the end of this course, each student should be able to: CO1: Determined the point of location of applied load to avoid twisting in thin sections used in aerospace applications. CO2: Understand the concept of distinguish between neutral and centroidal axes in curved beams. CO3: Understanding the analogy models developed for analyzing the non circular bars subjected to torsion, and also analyzing the stresses developed between rolling

	At the end of this course, each student should be
	able to:
	CO1: Understand the basic techniques of
	machining processes modeling
	CO2: Understand the mechanical aspects of
Drofossional Flastiva VI	orthogonal cutting mechanics
	CO3: Understand the thermal aspects of orthogonal
Ũ	cutting mechanics
Processes	CO4: Ability to extend, through modeling
	Techniques , the single point, multiple point
	and abrasive machining processes
	CO5: Estimate the material removal rate and
	cutting force, in an industrially useful
	manner, for practical machining processes.
	At the end of this course, each student should be
	able to:
	CO1: To select appropriate advanced materials
	processes for a given product or component
	recognizing material, size, precision, and
Technology	surface quality requirements.
	CO2: To conduct theoretical and experimental
	analysis for advanced materials removal and
	laser processing technologies.
	At the end of this course, each student should be able to:
	CO1: Ability to implement and execute well
Major Project	defined Objective.
	CO2: Ability to work in team at component level
	and system level.
	CO3: Ability to troubleshoot.
	Professional Elective-VI Unconventional Machining Processes Professional Elective-VI Advanced Materials Technology Major Project

Open Elective –I

(Common for EEE, ECE, CSE, IT, ME)

Course Code	Course Title / Name	Course Outcomes
CE600OE	Open Elective –I Disaster Preparedness & Planning Management	 At the end of this course, each student should be able to: CO1: The application of Disaster Concepts to Management CO2: Analyzing Relationship between Development and Disasters. CO3: Ability to understand Categories of Disasters CO4: Realization of the responsibilities to society
CS600OE	Open Elective –I Entrepreneurship	At the end of this course, each student should be able to: It enables students to learn the basics of Entrepreneurship and entrepreneurial development which will help them to provide vision for their own Start-up.
CS6010E	Open Elective –I Fundamentals of Management for Engineers	At the end of this course, each student should be able to: The students understand the significance of Management in their Profession. The various Management Functions like Planning, Organizing, Staffing, Leading, Motivation and Control aspects are learnt in this course. The students can explore the Management Practices in their domain area.
CS6020E	Open Elective –I Cyber Law & Ethics	 At the end of this course, each student should be able to: CO1: The students will understand the importance of professional practice, Law and Ethics in their personal lives and professional careers. CO2: The students will learn the rights and responsibilities as an employee, team member and a global citizen
EC600OE	Open Elective –I Fundamentals of Internet of Things	At the end of this course, each student should be able to:CO1: Known basic protocols in sensor networks.CO2: Program and configure Arduino boards for

		various designs.
		CO3: Python programming and interfacing for
		Raspberry Pi.
		CO4: Design IoT applications in different domains
		At the end of this course, each student should be
		able to:
		CO1: Identify suitable sensors and transducers for
	Open Flective	real time applications.
EI6000E	Open Elective –I Basics Of Sensors	CO2: Translate theoretical concepts into working
EIGUUUE		models.
	Technology	CO3: Design the experimental applications to
		engineering modules and practices.
		CO4: Design engineering solution to the
		Industry/Society needs and develop products.
		At the end of this course, each student should be
		able to:
		CO1: Model various systems applying reliability
	Open Elective –I Reliability Engineering	networks
EE6000E		CO2: Evaluate the reliability of simple and complex
ELOUUUE		systems
		CO3: Estimate the limiting state probabilities of
		repairable systems
		CO4: Apply various mathematical models for
		evaluating reliability of irreparable systems
		At the end of this course, each student should be
	Open Elective –I Renewable Energy Sources	able to:
		CO1: Understand the principles of wind power and
		solar photovoltaic power generation, fuel cells.
		CO2: Assess the cost of generation for conventional
EE601OE		and renewable energy plants
		CO3: Design suitable power controller for wind and
		solar applications
		CO4: Analyze the issues involved in the integration
		of renewable energy sources to the grid
		At the end of this course, each student should be
ME6000E	Open Elective –I	able to:
	Quantitative Analysis for	CO1: Familiar with issues that would crop up in
	Business Decisions	business
		CO2: Able to formulate Mathematical Model to

		resolve the issue
		CO3: Able to select technique for solving the
		formulated Mathematical Model
		CO4: Able to analyze the results obtained through
		the selected technique for implementation.
		At the end of this course, each student should be
		able to:
		CO1: Choose, prepare, interpret and use cost
		estimates as a basis for the different situations
		in an industrial company.
		CO2: Interpret financial statements and other
		financial reports of industrial companies,
		including the income statement, the balance
MT6000E	Open Elective –I	sheet, the cash flow statement and key
MITOUOL	Industrial Management	measures.
		CO3: Explain how strategic planning, management,
		management control, entrepreneurship,
		organization, production and learning works in
		an industrial company.
		CO4: Explain how the industrial company markets
		and price it's products.
		CO5: Explain how the company deal with it's
		environment.
		At the end of this course, each student should be
		able to:
	Open Elective –I Non-Conventional Energy Sources	CO1: Demonstrate the generation of electricity from
		various Non-Conventional sources of energy,
		have a working knowledge on types of fuel cells.
MT6010E		CO2: Estimate the solar energy, Utilization of it,
		Principles involved in solar energy collection
		and conversion of it to electricity generation.
		CO3 : Explore the concepts involved in wind energy
		conversion system by studying its components,
		types and performance.
		CO4: Illustrate ocean energy and explain the
		operational methods of their utilization.
		CO5: Acquire the knowledge on Geothermal energy.

PE6000E	Open Elective –I General Geology	At the end of this course, each student should be able to:The student would understand the basics of geology,viz: formation of earth, layers of earth, differenttypes of rocks, formation of sedimentary basins andthe micro fossils and their relationship to oil and gas.
MM6000E	Open Elective –I Testing of Materials	 At the end of this course, each student should be able to: CO1: Classify mechanical testing of ferrous and nonferrous metals and alloys. CO2: Recognize the importance of crystal defects including dislocations in plastic deformation. CO3: Identify the testing methods for obtaining strength and hardness. CO4: Examine the mechanisms of materials failure through fatigue and creep
MM6010E	Open Elective –I Alloy Steels	 At the end of this course, each student should be able to: CO1: Ability to understand different types of alloys used in alloy steels. CO2: Ability to solve different metallurgical problems in alloy steels. CO3: It has a lot of scope in R&D and in automobile engineering.
MN6000E	Open Elective –I Introduction to Mining Technology	At the end of this course, each student should be able to: Upon completion of the course, the student shall be able to understand various stages in the life of the mine, drilling, blasting and shaft sinking.
MN6010E	Open Elective –I Coal Gasification, CBM & Shale Gas	At the end of this course, each student should be able to:Student can get specialized in the underground coal gasification concepts, application and future scope in various geomining conditions.

Open Elective –III

(Common for EEE, ECE, CSE, IT, ME)

Course Code	Course Title / Name	Course Outcomes
AE8310E	Open Elective – III Air Transportation Systems	 At the end of this course, each student should be able to: CO1: Explain the air transport systems. CO2: Describe the aircraft characteristics, airlines and airport operation. CO3: Apply the Air Navigation System & Environmental Systems.
AE832OE	Open Elective – III Rockets and Missiles	 At the end of this course, each student should be able to: C01: Design a preliminary chemical rocket engine C02: Compute various types of aerodynamic forces acting on the rocket and missile during the flight. C03: Determine the various equations of motion used in rocket and missile technology C04: Illustrate staging of rockets and its performance estimation. C05: Judge the materials for rocket and missile components.
AM8310E	Open Elective – III Introduction to Mechatronics	At the end of this course, each student should beable to:At the end of the course, the student will be able to,Model, analyze and control engineering systems.Identify sensors, transducers and actuators tomonitor and control the behavior of a process orproduct. Develop PLC programs for a given task.Evaluate the performance of mechatronic systems.
AM8320E	Open Elective – III Microprocessors and Microcontrollers	At the end of this course, each student should be able to:CO1: Understands the internal architecture and organization of 8086, 8051 and ARM processors / controllers.

		CO2: Understands the interfacing techniques to
		8086 and 8051 and can develop assembly
		language programming to design
		microprocessor / micro controller based
		systems.
	Open Elective – III	At the end of this course, each student should be
BM8310E	Telemetry and Telecontrol	able to:
		Upon completion of this course students will
		appreciate the application of different telemetry systems and control to any process.
		At the end of this course, each student should be
		able to:
		C01: Gain basic knowledge of problems associated
		with EMI and EMC from electronic circuits and
	Open Elective – III	systems.
	Electromagnetic	CO2: Analyze various sources of EMI and various
BM8320E	Interference and	possibilities to provide EMC.
	Compatibility	CO3: Understand and analyze possible EMI
	compatibility	revention techniques such as grounding,
		shielding, filtering, and use of proper coupling
		mechanisms to improve compatibility of
		electronic circuits and systems in a given
		electromagnetic environment.
		At the end of this course, each student should be
		able to:
	Open Elective – III	CO1: Identify the environmental attributes to be
CE8310E	Environmental Impact	considered for the EIA study.
CEOSIOE	•	
	Assessment	CO2: Formulate objectives of the EIA studies. CO3: Identify the suitable methodology and prepare
		Rapid EIA.
		CO4: Indentify and incorporate mitigation measures.
	Open Elective – III	At the end of this course, each student should be able to:
CE8320E	Optimization Techniques	C01: Formulate optimization problem.
	in Engineering	CO2: Solve the problem by using a appropriate
		optimization techniques.
	Open Elective – III	At the end of this course, each student should be
CE8330E	Entrepreneurship and	able to:
220000	Small Business	It enables students to learn the basics of
	Enterprises	Entrepreneurship and entrepreneurial development
	Litter pribes	and optenear sing and end optenear ar acveropment

		which will help them to provide vision for their own
		Start-up.
		At the end of this course, each student should be
		able to:
		CO1: Retrieve the information content of remotely sensed data.
		CO2: Analyze the energy interactions in the atmosphere and earth surface features.
CN8310E	Open Elective – III	CO3: Interpret the images for preparation of
	Remote Sensing and GIS	thematic maps.
		CO4: Apply problem specific remote sensing data
		for engineering applications.
		C05: Analyze spatial and attribute data for solving
		spatial problems.
		CO6: Create GIS and cartographic outputs for
		presentation.
		At the end of this course, each student should be
CS8310E	Open Elective – III	able to:
	Linux Programming	CO1 :Work confidently in Linux environment.
		CO2: Work with shell script to automate different
		tasks as Linux administration.
		At the end of this course, each student should be able to:
		CO1: Be able to use and program in the
	Open Elective – III	Programming language R.
CS8320E	R Programming	CO2: Be able to use R to solve statistical problems.
	it i rogi unining	CO3: Be able to implement and describe Monte
		Carlo the technology.
		CO4: Be able to minimize and maximize functions
		using R.
		At the end of this course, each student should be
		able to:
		CO1: Be able to develop a form containing several
CS8330E	Open Elective – III	fields and be able to process the data
0000001	PHP Programming	provided on the form by a user in a PHP-
		based script.
		CO2: Understand basic PHP syntax for variable
		use and standard language constructs, such
		as conditionals and loops.

		CO3: Understand the syntax and use of PHP
		object-oriented classes.
		CO4: Understand the syntax and functions
		available to deal with file processing for files
		on the server as well as processing web URLs.
		CO5: Understand the paradigm for dealing with
		form-based data, both from the syntax of
		HTML forms, and how they are accessed
		inside a PHP-based script.
		At the end of this course, each student should be able to:
		CO1: Identify the various electronic instruments
FC0210F	Open Elective – III	based on their specifications for carrying out
EC8310E	Electronic Measuring	a particular task of measurement.
	Instruments	CO2: Measure various physical parameters by
		appropriately selecting the transducers.
		CO3: Use various types of signal generators, signal
		analyzers for generating and analyzing
		various real-time signals.
		At the end of this course, each student should be
		able to:
		CO1: Understand the impact of data analytics for
EM8310E	Open Elective – III	business decisions and strategy.
	Data Analytics	CO2: Carry out data analysis/statistical analysis
		CO3: To carry out standard data visualization and
		formal inference procedures.
		CO4: Design Data Architecture
		CO5: Understand various Data Sources.
		At the end of this course, each student should be
		able to:
		ERP System Implementation options, and functional
	Open Elective – III	modules of ERP.
EE8310E	Entrepreneur Resource	CO1: Introduction to ERP- Foundation for
	Planning	Understanding ERP systems-Business
		benefits of ERP-The challenges of
		implementing ERP system-ERP modules and
		Historical Development.
		Case: Response top RFP for ban ERP system (Mary
		Sumner).

		CO2: ERP system options & Selection methods-
		Measurement of project Inpact- information
		Technology Selection-ERP proposal
		evaluation-Project Evaluation Technique.
		Case: Atlantic Manufacturing (Mary Sumner).
		CO3: ERP system Installation Options- IS/IT
		Management results-Risk Identification
		analysis-System Projects- Demonstration of
		the system-Failure method-system
		Architecture & ERP (David L. Olson)
		Case: Data Solutions & Technology Knowledge (Mary
		Sumner).
		CO4: ERP - sales and Marketing- Management
		control process in sales and marketing – ERP
		customer relationship management - ERP
		systems- Accounting & Finance control
		processes. Financial modules in ERP
		systems.
		Case: Atlantic manufacturing (Mary Sumner).
		CO5: ERP – Production and Material Management-
		Control process on production and
		manufacturing - Production module in ERP-
		supply chain Management & e-market place-
		e-business & ERP-e supply chain & ERP-
		Future directions for ERP.
		Case: HR in Atlantic manufacturing. (Mary Sumner).
		At the end of this course, each student should be
		able to:
	Open Elective – III Management Information Systems	CO1: Understand the usage of MIS in organizations
		and the constituents of the MIS.
EE832OE		CO2: Understand the classifications of MIS,
		understanding of functional MIS and the
		different functionalities of these MIS. This
		would be followed by case study on Knowledge
		management.
		CO3: Assess the requirement and stage in which
		the organization is placed. Nolan model is
		expected to aid such decisions.
		CO4: Learn the functions and issues at each stage

EE8330EOpen Elective - III Organizational BehaviourAt the end of this course, each student should be also learnt.EE8330EOpen Elective - III Organizational BehaviourC02: Assess the potential effects of organizational level factors (such as structure, culture and change) on organizational behaviour.C03: Critically evaluate the potential effects of important developments in the external environment (such as globalization and advances in technology) on organizational behaviourE18310EOpen Elective - III Sensors and Transducers,At the end of this course, each student should be able to: Upon completion of this course the student should be able to: Upon completion of this course for al-time systems and case studies in instrumentation . C03: Understands measurement and analyzing techniques of digital computer power and performance.E18320EOpen Elective - III PC Based InstrumentationAt the end of this course, each student should be able to: Upon completion of this course of real-time systems and case studies in instrumentation . C03: C03: Develops the knowledge of real-time systems and case studies in instrumentation . C04: Capability to analyze PC based data . C05: Capable to develop instrumentation systems on various processes of industrial measurements.			of system development Further different
EB330EOpen Elective - III Organizational BehaviourAt the end of this course, each student should be able to: CO1: Analyse the behaviour of individuals and groups in organizations in terms of the key factors that influence organizational behaviour. CO2: Assess the potential effects of organizational level factors (such as structure, culture and change) on organizational behaviour. CO3: Critically evaluate the potential effects of important developments in the external environment (such as globalization and advances in technology) on organizational behaviour the context of organizational behaviour theories, models and concepts.EI8310EOpen Elective - III Sensors and Transducers, EI8320EAt the end of this course, each student should be able to: Upon completion of this course, each student should be able to: Upon completion of this course, each student should be able to: Upon completion of this course, each student should be able to: Upon completion of this course, each student should be able to: Upon completion of this course, each student should be able to: CO1: Understand the working of basic sensors and transducers used in any industries.EI8320EOpen Elective - III PC Based InstrumentationAt the end of this course, each student should be able to: CO1: Understands measurement and analyzing techniques of digital computer power and performance.EI8320EOpen Elective - III PC Based InstrumentationCO2: Understands the various types of interfacing systems and components.CO3: Develops the knowledge of real-time systems and case studies in instrumentation . CO4: Capability to analyze PC based data . CO5: Capable to develop instrumentation systems on various processes of industrial measurements.<			of system development. Further different
EE8330EOpen Elective - III Organizational BehaviourAt the end of this course, each student should be able to: CO1: Analyse the behaviour of individuals and groups in organizations in terms of the key factors that influence organizational behaviour. CO2: Assess the potential effects of organizational level factors (such as structure, culture and change) on organizational behaviour. CO3: Critically evaluate the potential effects of important developments in the external environment (such as globalization and advances in technology) on organizational behaviour. CO4: Analyse organizational behavioural behaviour.EI8310EOpen Elective - III Sensors and Transducers,At the end of this course, each student should be able to: Upon completion of this course the student shall be able to: Upon completion of this course, each student should be able to: Upon completion of this course of real-time systems and case studies in instrumentation . CO4: Understands the various types of interfacing systems and components. CO3: Develops the knowledge of real-time systems and case studies in instrumentation . CO4: Capability to analyze PC based data . CO5: Capable to develop instrumentation systems on various processes of industrial measurements.			
EE8330EOpen Elective - III Organizational Behaviourable to: CO1: Analyse the behaviour of individuals and groups in organizations in terms of the key factors that influence organizational behaviour.CO2: Assess the potential effects of organizational level factors (such as structure, culture and change) on organizational behaviour.CO2: Assess the potential effects of important developments in the external environment (such as globalization and advances in technology) on organizational behaviour.EI8310EOpen Elective - III Sensors and Transducers,CO4: Analyse organizational behaviour the ortext of organizational behaviour theories, models and concepts.EI8320EOpen Elective - III Sensors and Transducers,At the end of this course, each student should be able to: Upon completion of this course the student should be able to: CO1: Understands measurement and analyzing techniques of digital computer power and performance.EI8320EOpen Elective - III PC Based InstrumentationCO2: Understands the various types of interfacing systems and components.CO3: Develops the knowledge of real-time systems and case studies in instrumentation . CO4: Capability to analyze PC based data . CO3: Capable to develop instrumentation systems on various processes of industrial measurements.			
EE8330EOpen Elective - III Organizational BehaviourGopen Elective - III Organizational BehaviourCO2: Assess the potential effects of organizational level factors (such as structure, culture and change) on organizational behaviour.C03: Critically evaluate the potential effects of important developments in the external environment (such as globalization and advances in technology) on organizational behaviour.EI8310EOpen Elective - III Sensors and Transducers,At the end of this course, each student should be able to: Upon completion of this course the student should be able to: Upon completion of this course the student should be able to: CO1: Understands measurement and analyzing techniques of digital computer power and performance .EI8320EOpen Elective - III Sensors and Transducers,At the end of this course, each student should be able to: Upon completion of this course the student should be able to: CO1: Understands measurement and analyzing techniques of digital computer power and performance .EI8320EOpen Elective - III PC Based InstrumentationCO2: Understands measurement and analyzing techniques of digital computer power and performance .CO3: Develops the knowledge of real-time systems and case studies in instrumentation . CO3: Capable to develop instrumentation systems on various processes of industrial measurements.			
EE8330EOpen Elective - III Organizational BehaviourGopen Elective - III Organizational BehaviourCO2: Assess the potential effects of organizational level factors (such as structure, culture and change) on organizational behaviour.C03: Critically evaluate the potential effects of important developments in the external environment (such as globalization and advances in technology) on organizational behaviour.EI8310EOpen Elective - III Sensors and Transducers,At the end of this course, each student should be able to: Upon completion of this course the student should be able to: Upon completion of this course the student should be able to: CO1: Understands measurement and analyzing techniques of digital computer power and performance .EI8320EOpen Elective - III Sensors and Transducers,At the end of this course, each student should be able to: Upon completion of this course the student should be able to: CO1: Understands measurement and analyzing techniques of digital computer power and performance .EI8320EOpen Elective - III PC Based InstrumentationCO2: Understands measurement and analyzing techniques of digital computer power and performance .CO3: Develops the knowledge of real-time systems and case studies in instrumentation .CO3: Co2: Understands the various types of interfacing systems and components.CO3: Capable to develop instrumentation or co3: Capable to develop instrumentation systems on various processes of industrial measurements.At the end of this course, each student should be able to:			CO1: Analyse the behaviour of individuals and
EE8330EOpen Elective - III Organizational BehaviourGogen Elective - III Organizational BehaviourCO2: Assess the potential effects of organizational level factors (such as structure, culture and change) on organizational behaviour.C03: Critically evaluate the potential effects of important developments in the external environment (such as globalization and advances in technology) on organizational behaviour theories, models and concepts.E18310EOpen Elective - III Sensors and Transducers,At the end of this course, each student should be able to: Upon completion of this course the student should be able to: Upon completion of this course the student should be able to: C01: Understands measurement and analyzing techniques of digital computer power and performance.E18320EOpen Elective - III PC Based InstrumentationAt the end of this course, each student should be able to: C02: Understands measurement and analyzing techniques of digital computer power and performance.E18320EOpen Elective - III PC Based InstrumentationC03: Co2: Understands measurement and analyzing techniques of digital computer power and performance.E18320EOpen Elective - III PC Based InstrumentationC03: Develops the knowledge of real-time systems and case studies in instrumentation .C04: Capability to analyze PC based data .C05: Capable to develop instrumentation systems on various processes of industrial measurements.			-
EE8330E Open Elective – III Organizational Behaviour CO2: Assess the potential effects of organizational level factors (such as structure, culture and change) on organizational behaviour. CO3: Critically evaluate the potential effects of important developments in the external environment (such as globalization and advances in technology) on organizational behaviour. CO4: Analyse organizational behavioural issues in the context of organizational behaviour theories, models and concepts. E18310E Open Elective – III Sensors and Transducers, At the end of this course, each student should be able to: Upon completion of this course the student should be able to: CO1: Understand the working of basic sensors and transducers used in any industries. At the end of this course, each student should be able to: CO2: Understands measurement and analyzing techniques of digital computer power and performance. CO2: Understands the various types of interfacing systems and components. CO3: Develops the knowledge of real-time systems and case studies in instrumentation . CO4: Capability to analyze PC based data . CO5: Capable to develop instrumentation systems on various processes of industrial measurements.			
EE8330EOpen Elective - III Organizational Behaviourlevel factors (such as structure, culture and change) on organizational behaviour.C03: Critically evaluate the potential effects of important developments in the external environment (such as globalization and advances in technology) on organizational behaviour.E18310EOpen Elective - III Sensors and Transducers,At the end of this course, each student should be able to: Upon completion of this course, each student should be able to: Upon completion of this course, each student should be able to: Upon completion of this course, each student should be able to: C01: Understands the various types of interfacing systems and components.E18320EOpen Elective - III PC Based InstrumentationAt the end of this course, each student should be able to: C02: Understands the various types of interfacing systems and components.C03: Develops the knowledge of real-time systems and case studies in instrumentation . C04: Capability to analyze PC based data . C05: Capabile to develop instrumentation systems on various processes of industrial measurements.			_
EE8330EOpen Elective - III Organizational Behaviourchange) on organizational behaviour.C03: Critically evaluate the potential effects of important developments in the external environment (such as globalization and advances in technology) on organizational behaviour.E18310EOpen Elective - III Sensors and Transducers,At the end of this course, each student should be able to: Upon completion of this course, each student should be able to:E18320EOpen Elective - III PC Based InstrumentationAt the end of this course, each student should be able to: CO1: Understands measurement and analyzing techniques of digital computer power and performance.E18320EOpen Elective - III PC Based InstrumentationCO2: Understands the various types of interfacing systems and components.C03: Develops the knowledge of real-time systems and case studies in instrumentation . CO3: Co2: Co3: Develops the knowledge of real-time systems and case studies in instrumentation . CO4: Capability to analyze PC based data . CO5: Capable to develop instrumentation systems on various processes of industrial measurements.			
Organizational behaviourCO3: Critically evaluate the potential effects of important developments in the external environment (such as globalization and advances in technology) on organizational behaviour.C04: Analyse organizational behaviour the context of organizational behaviour theories, models and concepts.E18310EOpen Elective - III Sensors and Transducers,At the end of this course, each student should be able to: Upon completion of this course the student should be able to: Upon completion of this course, each student should be able to: Upon completion of this course, each student should be able to: C01: Understands measurement and analyzing techniques of digital computer power and performance.E18320EOpen Elective - III PC Based InstrumentationC02: Understands the various types of interfacing systems and components.C03: Develops the knowledge of real-time systems and case studies in instrumentation.C04: Capability to analyze PC based data . C05: Capable to develop instrumentation systems on various processes of industrial measurements.	EE8330E	-	
EI8310EOpen Elective - III Sensors and Transducers,At the end of this course, each student should be able to: Upon completion of this course the student should be able to: Upon completion of this course the student should be able to: Upon completion of this course the student should be able to: Upon completion of this course the student should be able to: CO1: Understands measurement and analyzing techniques of digital computer power and performance .E18320EOpen Elective - III PC Based InstrumentationAt the end of this course, each student should be able to: Upon completion of this course the student should be able to: CO1: Understands measurement and analyzing techniques of digital computer power and performance .E18320EOpen Elective - III PC Based InstrumentationCO2: Understands the various types of interfacing systems and components.CO3: Develops the knowledge of real-time systems and case studies in instrumentation . CO4: Capability to analyze PC based data . CO5: Capable to develop instrumentation systems on various processes of industrial measurements.		Organizational Behaviour	
E18320EOpen Elective - III Sensors and Transducers, Deen Elective - III Sensors and Transducers,At the end of this course, each student should be able to: Upon completion of this course, each student should be able to understand the working of basic sensors and transducers used in any industries.E18320EOpen Elective - III Sensors and Transducers,At the end of this course, each student should be able to: Upon completion of this course the student should be able to: Upon completion of this course, each student should be able to: Upon completion of this course, each student should be able to: CO1: Understand the working of basic sensors and transducers used in any industries.E18320EOpen Elective - III PC Based InstrumentationAt the end of this course, each student should be able to: CO2: Understands measurement and analyzing techniques of digital computer power and performance.CO2: Understands the various types of interfacing systems and components.CO3: Develops the knowledge of real-time systems and case studies in instrumentation . CO4: Capability to analyze PC based data . CO5: Capable to develop instrumentation systems on various processes of industrial measurements.			
EI8310EOpen Elective - III Sensors and Transducers,At the end of this course, each student should be able to: Upon completion of this course the student should be able to understand the working of basic sensors and transducers used in any industries.EI8320EOpen Elective - III PC Based InstrumentationAt the end of this course, each student should be able to: Upon completion of this course the student should be able to understand the working of basic sensors and transducers used in any industries.EI8320EOpen Elective - III PC Based InstrumentationAt the end of this course, each student should be able to: CO1: Understands measurement and analyzing techniques of digital computer power and performance.CO2: Understands measurement and components.CO3: Develops the knowledge of real-time systems and case studies in instrumentation . CO4: Capability to analyze PC based data . CO5: Capable to develop instrumentation systems on various processes of industrial measurements.Open Elective - III PC Based InstrumentationAt the end of this course, each student should be able to: CO1: Understands measurement should be able to: CO3: Develops the knowledge of real-time systems and case studies in instrumentation . CO4: Capability to analyze PC based data . CO5: Capable to develop instrumentation systems on various processes of industrial measurements.			
EI8310EOpen Elective - III Sensors and Transducers,At the end of this course, each student should be able to: Upon completion of this course the student should be able to understand the working of basic sensors and transducers used in any industries.EI8320EOpen Elective - III PC Based InstrumentationAt the end of this course, each student should be able to: Upon completion of this course the student should be able to understand the working of basic sensors and transducers used in any industries.EI8320EOpen Elective - III PC Based InstrumentationAt the end of this course, each student should be able to: CO1: Understands measurement and analyzing techniques of digital computer power and performance.CO2: Understands the various types of interfacing systems and case studies in instrumentation. CO3: Develops the knowledge of real-time systems and case studies in instrumentation. CO4: Capability to analyze PC based data . CO5: Capable to develop instrumentation systems on various processes of industrial measurements.			
EI8310EOpen Elective - III Sensors and Transducers,At the end of this course, each student should be able to: Upon completion of this course the student shall be able to understand the working of basic sensors and transducers used in any industries.EI8320EOpen Elective - III PC Based InstrumentationAt the end of this course, each student should be able to: Upon completion of this course, each student should be able to: CO1: Understand the working of basic sensors and transducers used in any industries.EI8320EOpen Elective - III PC Based InstrumentationAt the end of this course, each student should be able to: CO1: Understands measurement and analyzing techniques of digital computer power and performance.CO2: Understands the various types of interfacing systems and components.CO3: Develops the knowledge of real-time systems and case studies in instrumentation . CO4: Capability to analyze PC based data . CO5: Capable to develop instrumentation systems on various processes of industrial measurements.			
EI8310EOpen Elective - III Sensors and Transducers,At the end of this course, each student should be able to: Upon completion of this course the student shall be able to understand the working of basic sensors and transducers used in any industries.EI8320EOpen Elective - III PC Based InstrumentationAt the end of this course, each student should be able to: Upon completion of this course, each student should be able to: CO1: Understand the working of basic sensors and transducers used in any industries.EI8320EOpen Elective - III PC Based InstrumentationAt the end of this course, each student should be able to: CO2: Understands measurement and analyzing techniques of digital computer power and performance .CO2: Understands the various types of interfacing systems and components.CO3: Develops the knowledge of real-time systems and case studies in instrumentation .CO4: Capability to analyze PC based data . CO5: Capable to develop instrumentation systems on various processes of industrial measurements.			
EI8310EOpen Elective - III Sensors and Transducers,At the end of this course, each student should be able to: Upon completion of this course the student shall be able to understand the working of basic sensors and transducers used in any industries.EI8320EOpen Elective - III PC Based InstrumentationAt the end of this course, each student should be able to: Upon completion of this course, each student should be able to: CO1: Understands measurement and analyzing techniques of digital computer power and performance .EI8320EOpen Elective - III PC Based InstrumentationCO2: Understands the various types of interfacing systems and components.CO3: Develops the knowledge of real-time systems and case studies in instrumentation .CO4: Capability to analyze PC based data .CO5: Capable to develop instrumentation systems on various processes of industrial measurements.At the end of this course, each student should be able to:			
EI8310EOpen Elective – III Sensors and Transducers,able to: Upon completion of this course the student shall be able to understand the working of basic sensors and transducers used in any industries.EI8320EOpen Elective – III PC Based InstrumentationAt the end of this course, each student should be able to: CO1: Understands measurement and analyzing techniques of digital computer power and performance .EI8320EOpen Elective – III PC Based InstrumentationCO2: Understands the various types of interfacing systems and components.CO3: Develops the knowledge of real-time systems and case studies in instrumentation .CO4: Capability to analyze PC based data .CO5: Capable to develop instrumentation systems on various processes of industrial measurements.At the end of this course, each student should be able to:			
E18310ESensors and Transducers,Upon completion of this course the student shall be able to understand the working of basic sensors and transducers used in any industries.E18320EOpen Elective – III PC Based InstrumentationAt the end of this course, each student should be able to: CO1: Understands measurement and analyzing techniques of digital computer power and performance .E18320EOpen Elective – III PC Based InstrumentationCO2: Understands the various types of interfacing systems and components.CO3: Develops the knowledge of real-time systems and case studies in instrumentation .CO4: Capability to analyze PC based data .C05: Capable to develop instrumentation systems on various processes of industrial measurements.At the end of this course, each student should be able to:			At the end of this course, each student should be
Sensors and Transducers,Upon completion of this course the student shall be able to understand the working of basic sensors and transducers used in any industries.EI8320EOpen Elective – III PC Based InstrumentationAt the end of this course, each student should be able to: CO1: Understands measurement and analyzing techniques of digital computer power and performance .EI8320EOpen Elective – III PC Based InstrumentationCO2: Understands the various types of interfacing systems and components.CO3: Develops the knowledge of real-time systems and case studies in instrumentation .CO4: Capability to analyze PC based data .C05: Capable to develop instrumentation systems on various processes of industrial measurements.At the end of this course, each student should be able to:	EI8310E	-	
EI832OEOpen Elective – IIIAt the end of this course, each student should be able to: CO1: Understands measurement and analyzing techniques of digital computer power and performance .EI832OEOpen Elective – III PC Based InstrumentationCO2: Understands the various types of interfacing systems and components.CO3: Develops the knowledge of real-time systems and case studies in instrumentation .CO4: Capability to analyze PC based data .CO5: Capable to develop instrumentation systems on various processes of industrial measurements.At the end of this course, each student should be		Sensors and Transducers,	
EI8320EOpen Elective – IIIAt the end of this course, each student should be able to: CO1: Understands measurement and analyzing techniques of digital computer power and performance .EI8320EOpen Elective – III PC Based InstrumentationCO2: Understands the various types of interfacing systems and components.CO3: Develops the knowledge of real-time systems and case studies in instrumentation .CO4: Capability to analyze PC based data .CO5: Capable to develop instrumentation systems on various processes of industrial measurements.At the end of this course, each student should be			_
EI8320EOpen Elective – III PC Based Instrumentationable to: CO1: Understands measurement and analyzing techniques of digital computer power and performance .CO2: Understands the various types of interfacing systems and components.CO3: Develops the knowledge of real-time systems and case studies in instrumentation .CO4: Capability to analyze PC based data .CO5: Capable to develop instrumentation systems on various processes of industrial measurements.			-
EI832OEOpen Elective – IIICO1: Understands measurement and analyzing techniques of digital computer power and performance.Develops Elective – IIICO2: Understands the various types of interfacing systems and components.PC Based InstrumentationCO3: Develops the knowledge of real-time systems and case studies in instrumentation .CO4: Capability to analyze PC based data .CO5: Capable to develop instrumentation systems on various processes of industrial measurements.Onen Elective – IIIAt the end of this course, each student should be			
EI8320EOpen Elective – III PC Based InstrumentationCO2: Understands the various types of interfacing systems and components.CO3: Develops the knowledge of real-time systems and case studies in instrumentation .CO3: Develops the knowledge of real-time systems and case studies in instrumentation .CO4: Capability to analyze PC based data .CO5: Capable to develop instrumentation systems on various processes of industrial measurements.			
EI832OE Open Elective – III performance . PC Based Instrumentation CO2: Understands the various types of interfacing systems and components. CO3: Develops the knowledge of real-time systems and case studies in instrumentation . CO3: Develops the knowledge of real-time systems and case studies in instrumentation . CO4: Capability to analyze PC based data . CO5: Capable to develop instrumentation systems on various processes of industrial measurements. Open Elective – III At the end of this course, each student should be			
EI8320EOpen Elective – IIICO2: Understands the various types of interfacing systems and components.PC Based InstrumentationCO3: Develops the knowledge of real-time systems and case studies in instrumentation .CO4: Capability to analyze PC based data .CO5: Capable to develop instrumentation systems on various processes of industrial measurements.Open Elective – IIIAt the end of this course, each student should be			techniques of digital computer power and
E18320E PC Based Instrumentation systems and components. C03: Develops the knowledge of real-time systems and case studies in instrumentation . C03: Develops the knowledge of real-time systems and case studies in instrumentation . C04: Capability to analyze PC based data . C05: Capable to develop instrumentation systems on various processes of industrial measurements. Open Elective – III At the end of this course, each student should be			*
PC Based Instrumentation systems and components. CO3: Develops the knowledge of real-time systems and case studies in instrumentation . CO4: Capability to analyze PC based data . CO5: Capable to develop instrumentation systems on various processes of industrial measurements. Open Elective – III At the end of this course, each student should be	F18320F	Open Elective – III	CO2: Understands the various types of interfacing
and case studies in instrumentation . CO4: Capability to analyze PC based data . CO5: Capable to develop instrumentation systems on various processes of industrial measurements. Open Elective – III At the end of this course, each student should be	1105201	PC Based Instrumentation	systems and components.
CO4: Capability to analyze PC based data . CO5: Capable to develop instrumentation systems on various processes of industrial measurements. Open Elective – III At the end of this course, each student should be			CO3: Develops the knowledge of real-time systems
CO5: Capable to develop instrumentation systems on various processes of industrial measurements.			and case studies in instrumentation.
On various processes of industrial measurements. Onen Elective – III At the end of this course, each student should be			CO4: Capability to analyze PC based data .
measurements. Open Elective – III At the end of this course, each student should be			C05: Capable to develop instrumentation systems
Open Elective – III At the end of this course, each student should be			on various processes of industrial
Open Elective – III At the end of this course, each student should be			measurements.
I MEODINE I ·	ME021OF	Open Elective – III	At the end of this course, each student should be
Total Quality Management able to:	ME8310E	Total Quality Management	able to:
CO1: Evaluate the principles of quality			CO1: Evaluate the principles of quality

		monogoment of the similar has the set
		management and to explain how these
		principles can be applied within quality
		management systems.
		CO2: Identify the key aspects of the quality
		improvement cycle and to select and use
		appropriate tools and techniques for
		controlling, improving and measuring quality.
		CO3: Critically appraise the organisational,
		communication and teamwork requirements
		for effective quality management .
		CO4: Critically analyse the strategic issues in quality
		management, including current issues and
		developments, and to devise and evaluate
		quality implementation plans.
		At the end of this course, each student should be
		able to:
		CO1: To list out important legislations related to
	Open Elective – III	Health , Safety and Environment
	-	CO2: To list out requirements mentioned in
ME8320E	Industrial Safety, Health, and Environmental Engineering	factories act for the prevention of accidents.
		To understand the health and welfare
		provisions given in factories act.
		CO3: To understand the statutory requirements
		for an Industry on registration, license and
		its renewal.
		CO4: To prepare onsite and offsite emergency plan.
	Open Elective – III Basics of Thermodynamics	At the end of this course, each student should be
		able to:
		C01: Understand and differentiate between
		different thermodynamic systems and
ME8330E		processes.
		CO2: Understand and apply the laws of
		Thermodynamics to different types of
		system undergoing various processes.
		CO3: Understand and analyze the Thermodynamic
		Cycles.
ME8340E	Open Elective – III Reliability Engineering	At the end of this course, each student should be
		able to:
		C01: Model various systems applying reliability
		networks.
L		

		CO2: Evaluate the reliability of simple and complex systems.
		CO3: Estimate the limiting state probabilities of
		repairable systems.
		CO4: Apply various mathematical models for
		evaluating reliability of irrepairable systems.
		At the end of this course, each student should be
		able to:
	Open Elective – III	The intended course covers the whole spectrum of
NT8310E	Concepts of Nano Science	nanomaterials ranging from introduction,
	And Technology	classification, synthesis, properties, and
		characterization tools of nanophase materials to
		application including some new developments in
		various aspects.
	Open Elective – III	At the end of this course, each student should be
NT8320E	Synthesis of	able to:
	Nanomaterials	To provide abundant knowledge on various
		synthesis methods of nanomaterials.
		At the end of this course, each student should be
		able to:
		CO1: The student will develop a fundamental
	Open Elective – III	knowledge of nanomaterials
NT8330E	Characterization of	CO2: The student will demonstrate an
	Nanomaterials	understanding of the properties of materials
		with strong dependence on size.
		CO3: The student will demonstrate an understanding
		of approaches to nanomaterials
		characterization.
		At the end of this course, each student should be
	Open Elective – III	able to:
MT8310E	Renewable Energy	CO1: Understanding of renewable energy sources.
MIGJIOE	Sources	CO2: Knowledge of working principle of various
	Sources	energy systems.
		CO3: Capability to carry out basic design of
		renewable energy systems.
	Open Elective – III	At the end of this course, each student should be
MT8320E	Production Planning and Control	able to:
		At the end of the course, the student will be able to,

		Understand production systems and their
		characteristics. Evaluate MRP and JIT systems
		against traditional inventory control systems.
		Understand basics of variability and its role in the
		performance of a production system. Analyze
		aggregate planning strategies. Apply forecasting and
		scheduling techniques to production systems.
		Understand theory of constraints for effective
		management of production systems.
		At the end of this course, each student should be
	Open Elective – III	able to:
MT8330E	Entrepreneurship and	It enables students to learn the basics of
MIOSSOL	Small Business Enterprises	Entrepreneurship and entrepreneurial development
		which will help them to provide vision for their own
		Start-up.
	Open Elective – III Design and Selection of Engineering Materials	At the end of this course, each student should be
MM8310E		able to:
		Understand the Relationship between materials
		selection, processing and applications.
	Open Elective – III Solid Fuel Technology	At the end of this course, each student should be
		able to: Students can understand the fundamentals of
MN8310E		
		Processes of formation of coal, properties and
		evaluation and coal preparation and washability
		characteristics of coal.
		At the end of this course, each student should be able to:
MN832OE		CO1: Gain insights of safety management system
	Open Elective – III	and risk management in Indian mining
	Health & Safety in Mines	industries.
		CO2: Formulate safety audits and control in
		mining industries.
		CO3: Produce risk analysis using statistical
		methods and analysis of mine accidents.

		At the end of this course, each student should be
PE8310E		able to:
	Open Elective – III Disaster Management	 CO1: Understanding Disasters, man-made Hazards and Vulnerabilities. CO2: Understanding disaster management mechanism. CO3: Understanding capacity building concepts and planning of disaster managements.
		At the end of this course, each student should be
		able to:
PE832OE	Open Elective – III Fundamentals of Liquefied Natural Gas	 CO1: Have good knowledge on LNG process. CO2: Classify different liquefaction techniques. CO3: Understand different units in LNG processing and transportation. CO4: Have knowledge associated with safety aspects of LNG.
		At the end of this course, each student should be
PE833OE	Open Elective – III Health, Safety and Environment in Petroleum Industry	 able to: CO1: The student can have the knowledge of various Acts related to safety, Health and environment in petroleum industry. CO2: The student can have the knowledge of various drilling fluids handling and safe disposal such toxic products. CO3: Knowledge of disaster management to fight any crisis. CO4: Knowledge of Hazard studies and occupational health hazards in the industry.