

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE OUTCOMES (COs)

M.Tech. I Year I Sem R19 Syllabus Power Electronics And Electrical Drives

Course Code	Course Title / Name	Course Outcomes
		At the end of this course, each student should be
		able to:
Professional	Power Electronic	CO1: Choose appropriate device for a particular
Core - I	Converters	converter topology.
		CO2: Use power electronic simulation packages for
		analyzing and designing power converters.
		At the end of this course, each student should be
		able to:
Professional	Machine Modeling and	CO1: Develop the mathematical models of various AC
Core - II	Analysis	and DC machines
		CO2: Analyze the developed models in various
		reference frames.
	Power Electronics for Renewable Energy Systems	At the end of this course, each student should be
		able to:
Professional		C01: Ability to understand and analyze power
Elective - I		system operation, stability, control and
		protection.
		CO2: Ability to handle the engineering aspects of
		electrical energy generation and utilization.
Professional Elective - I	Smart Grid Technologies	At the end of this course, each student should be
		able to:
		CO1: Appreciate the difference between smart grid &
		conventional grid
		CO2: Apply smart metering concepts to industrial

		and commercial installations
		CO3: Formulate solutions in the areas of smart
		substations, distributed generation and wide
		area measurements
		CO4: Come up with smart grid solutions using
		modern communication technologies
		At the end of this course, each student should be
		able to:
		CO1: Understand the basic mathematical analysis of
Professional	Dynamics of Electrical	electrical machines and its characteristics.
Elective - I	Machines	CO2: Understand behavior of electrical machines
		under steady state and transient state.
		CO3: Understand dynamic modeling of electrical
		machines.
		At the end of this course, each student should be
		able to:
		CO1: Various terms of basic and modern control
		system for the real time analysis and design of
		control systems.
		CO2: To perform state variables analysis for any real
		time system.
		CO3: Apply the concept of optimal control to any
Professional		system.
Floctivo - I	Modern Control Theory	CO4: Able to examine a system for its stability,
Elective - I		controllability and observability.
		CO5: Implement basic principles and techniques in
		designing linear control systems.
		CO6: Formulate and solve deterministic optimal
		control problems in terms of performance
		indices.
		CO7: Apply knowledge of control theory for practical
		implementations in engineering and network
		analysis.
		At the end of this course, each student should be
		able to:
Professional Elective - II	Power Semiconductor Devices and Modelling	CO1: Know the operating charectertics of various
		basic semiconductor devices and switches
		CO2: Understand the advanced power
		semiconductor devices operation.
		CO3: Know the modeling of basic and advanced

		semiconductor devices and switches through
		CO4: Analyze the applications of various power
		semiconductor switches
		At the end of this course, each student should be
		able to:
		CO1: Distinguish the importance of load
		compensation in symmetrical as well as un
		symmetrical loads
Professional	Reactive Power	CO2: Observe various compensation methods in
Elective - II	Compensation and	transmission lines
	Management	CO3: Construct model for reactive power
		coordination
		CO4: Distinguish demand side reactive power
		management & user side reactive power
		management
		At the end of this course, each student should be
		able to:
		CO1: Design of magnetic components (i.e., inductor
		and transformer) in a converter.
Professional	High Frequency Magnetic Components	CO2: Perform steady-state analysis of switched
Floctivo - II		mode power supply.
Elective - II		CO3: Understand core loss in an electromagnetic
		device, recognize & describe its effect.
		CO4: Describe the engineering uses of
		electromagnetic waves, by frequency band, and
		the respective hazards associated with them
		At the end of this course, each student should be
	Hybrid Electric Vehicles	able to:
Professional		CO1: Acquire knowledge about fundamental
Elective - II		concepts, principles, analysis and design of
		hybrid and electric vehicles.
		CO2: To learn electric drive in vehicles / traction.
		At the end of this course, each student should be
	Research Methodology and IPR	able to:
		CO1: Understand research problem formulation.
		CO2: Analyze research related information
		CU3: Follow research ethics
		CU4: Understand that today's world is controlled by
		Computer, Information Technology, but

	tomorrow world will be ruled by ideas.
	concent and creativity
	CO5 : Understanding that when IPP would take such
	important place in growth of individuals &
	ninportant place in growth of mulviduals &
	nation, it is needless to emphasis the need of
	information about intellectual Property Right
	to be promoted among students in general &
	engineering in particular.
	CO6: Understand that IPR protection provides an
	incentive to inventors for further research
	work and investment in R & D, which leads to
	creation of new and better products, and in
	turn brings about, economic growth and social
	benefits.
	At the end of this course, each student should be
	able to:
	CO1: Develop the mathematical models of various
	machines like, induction motor and
	Synchronous machines ,permenant magnet
Analysis Lab	synchronous motor,brushless DC motor using
	modeling equations.
	CO2: Analyze the developed models in various
	reference frames.
	At the end of this course, each student should be
	able to:
	CO1: Simulate AC-AC Converters
Power Electronic	CO2: Simulate AC-DC Converters
Converters Lab	CO3: Simulate DC-DC Converters
	CO4: Simulate DC-AC Converters
	CO5: Analysis of various converter topologies
	developed
	Machine Modelling and Analysis Lab Power Electronic Converters Lab

Course Code	Course Title / Name	Course Outcomes
		At the end of this course, each student should be
		able to:
Professional	Advanced Power	C01: Develop and analyze various converter
Core - III	Electronic Converters	topologies.
		CO2: Design AC or DC switched mode power
		supplies.
		At the end of this course, each student should be
		able to:
		CO1: Develop induction motor for variable speed
		operations using scalar and vector control
Professional		techniques.
Core - IV	Electrical Drives	CO2: Identify the difference between the rotor
		resistance control and static rotor resistance
		control method and significance of slip power
		recovery drives.
		CO3: Develop controllers for synchronous motor and
		variable reluctance motor.
		At the end of this course, each student should be
		able to:
		C01: Knowledge about load control techniques in
		industries and its application.
Professional	Industrial Load Modelling	CO2: Different types of industrial processes and
Elective - III	and Control	optimize the process using tools like LINDO
		and LINGO.
		CO3: Apply load management to reduce demand of
		electricity during peak time.
		CO4: Apply different energy saving opportunities in
		industries.
Professional Elective - III		At the end of this course, each student should be
		able to:
	Advanced Digital Signal Proceesing	CO1: Know about the time domain and frequency
		domain representations as well analysis of
		discrete time signals and systems
		CO2: Study the design techniques for IIR and FIR
		filters and their realization structures.

M.Tech. I Year II Sem R19 Syllabus Power Electronics And Electrical Drives

		CO3: Acquire knowledge about the finite word
		length effects in implementation of digital
		filters.
		CO4: Know about the various linear signal models
		and estimation of power spectrum of
		stationary Random signals
		C05: Design optimum FIR and IIR filters
		At the end of this course, each student should be
		able to:
		C01: Describe the basic tasks of Supervisory Control
		Systems (SCADA) as well as their Typical
		applications.
		CO2: Acquire knowledge about SCADA architecture.
		various advantages and disadvantages of each
Professional	SCADA Systems and	system.
Elective - III	Applications	CO3: Knowledge about single unified standard
		architecture IEC 61850.
		CO4: To learn about SCADA system components:
		remote terminal units. PLCs, intelligent
		electroni devices, HMI systems, SCADA server.
		C05: Learn and understand about SCADA
		applications in transmission and distribution
		sector, industries etc.
		At the end of this course, each student should be
		able to:
		C01: Knowledge concepts and basic operation of
		PWM converters, including basic circuit
		operation and design
Professional	PWM Converters and Applications	CO2: Learn the steady-state and dynamic analysis of
Elective - III		PWM converters along with the applications
		like solid state drives and power quality
		CO3: Able to recognize and use the following
		concepts and ideas:Steady-State and transient
		modeling and analysis of power converters
		with various PWM techniques.
		At the end of this course, each student should be
Professional	Advanced Microcontroller	able to:
Elective - IV	Based Systems	C01: learn how to program a processor in assembly
		language and develop an advanced processor

		based system
		CO2: learn configuring and using different
		peripherals in a digital system
		CO3: compile and debug a Program
		CO4: generate an executable file and use it
		At the end of this course, each student should be
		able to:
Professional	Distributed Concretion	CO1: understand the planning and operational issues
Elective - IV	Distributed Generation	related to Distributed Generation.
		CO2: Acquire Knowledge about Distributed
		Generation Learn Micro-Grids
		At the end of this course, each student should be
		able to:
		CO1: Know the different characteristics of electric
		power quality in power systems,
		CO2: Learn about the applications of non-linear
Professional	Downer Quality	loads,
Elective - IV	Power Quality	CO3: Know the applications of Hartley and Wavelet
		Transforms,
		CO4: Learn how to mitigate the power quality
		problems
		C05: Learn about the application of FACTS device on
		DG side.
		At the end of this course, each student should be
	Integration of Energy Sources	able to:
		C01: Identify the characteristics of renewable
		energy sources and converters.
Professional		CO2: Analyze the importance of storage and sizing of
Elective - IV		hybrid systems.
		CO3: Realize the problems related to isolated
		systems.
		CO4: Analyze the challenges faced by the grid by
		integrating renewable energy sources.
		At the end of this course, each student should be
	Mini Project with Seminar	able to:
		C01: Demonstrate a sound technical knowledge of
		their selected mini project topic.
		CO2: Undertake problem identification, formulation
		and solution.

		CO3: Design engineering solutions to complex
		problems utilising a systems approach.
		CO4: Communicate with engineers and the
		community at large.
		CO5: Demonstrate the knowledge, skills and
		attitudes of a professional engineer
		At the end of this course, each student should be
		able to:
		CO1: Know the speed control strategies of AC and DC
		drives
		CO2: Design speed, current controllers for AC and DC
		drives
Lab - III	Advanced Power	CO3: Get the knowledge on multi-level inverter/
Lab - III	Electronic Converters Lab	converter topologies
		CO4: Perform the open loop and closed loop speed
		control analysis of AC and DC drives
		C05: Design the gate driver circuits for converter
		topologies
		CO6: Know the complete study of advanced
		converter technologies
		At the end of this course, each student should be
		able to:
	Electrical Drives Lab	CO1: Develop induction motor for variable speed
		operations using scalar and vector control
		techniques.
Lab - IV		CO2: Identify the difference between the rotor
		resistance control and static rotor resistance
		control method and significance of slip power
		recovery drives.
		CO3: Develop controllers for synchronous motor and
		variable reluctance motor.
Audit - II	Audit Course - II	

Course Code	Course Title / Name	Course Outcomes
Professional Elective - V	Reliability Engineering	 At the end of this course, each student should be able to: CO1: Apply fundamental knowledge of Reliability to modeling and analysis of seriesparallel and Non-series parallel systems. CO2: Solve some practical problems related CO3: Understand or become aware of various failures, causes of failures and remedies for failures in practical systems.
Professional Elective - V	Flexible AC Transmission Systems	 At the end of this course, each student should be able to: CO1: Choose proper controller for the specific application based on system requirements CO2: Understand various systems thoroughly and their requirements CO3: Interpret the control circuits of Shunt Controllers SVC & STATCOM for various functions viz.Transient stability Enhancement, voltage instability prevention and power oscillation damping CO4: Detect the Power and control circuits of Series Controllers GCSC, TSSC and TCSC
Professional Elective - V	HVDC Transmission	 At the end of this course, each student should be able to: CO1: Expose the students to the state of the art HVDC technology. CO2: Knowledge of modelling and analysis of HVDC system for inter-area power flow regulation. CO3: Study of Neetishatakam will help in developing.
Professional Elective - V	Energy Storage Technologies	 At the end of this course, each student should be able to: CO1: Understand the role of electrical energy storage technologies in electricity usage CO2: Know the behavior and features of electrical 9 energy storage systems CO3: Analyze the applications of energy storage

M.Tech. II Year III Sem R19 Syllabus Power Electronics And Electrical Drives

		system CO4: Understand the hierarchy, demand for energy storage and valuation techniques. CO5: Get knowledge about energy storage forecasting methods
Open Elective	Open Elective	

Course Code	Course Title / Name	Course Outcomes
		At the end of this course, each student should be
		able to:
		CO1: Understand relevant legislation and codes of
		ethics.
Audit Course	English for Research	CO2: Computer forensics and digital detective and
1&11	Paper Writing	various processes, policies and procedures.
		CO3: E-discovery, guidelines and standards, E-
		evidence, tools and environment.
		CO4: Email and web forensics and network forensics.
		At the end of this course, each student should be
		able to:
		CO1: Understanding the concepts in grid computing
Audit Course		CO2: Ability to set up cluster and run parallel
I & II	Disaster Management	applications
run		CO3: Ability to understand the cluster projects and
		cluster OS
		CO4: Understanding the concepts of pervasive
		computing & quantum computing.
		At the end of this course, each student should be
		able to:
Audit Course	Sanskrit for Technical	CO1: Understanding basic Sanskrit language
I & II	Knowledge	CO2: Ancient Sanskrit literature about science &
		technology can be understood
		CO3: Being a logical language will help to develop
		logic in students
		At the end of this course, each student should be
Audit Course	Value Education	CO1: Knowledge of self-development
		CO1. Knowledge of sen-development
1 & 11		CO2: Learn the importance of Human values
		CO3: Developing the overall personality
		At the end of this course, each student should be
Audit Course I & II		able to:
	Constitution of India	CO1: Discuss the growth of the demand for civil
		rights in India for the bulk of Indians before the
		arrival of Gandhi in Indian politics.

LIST OF AUDIT COURSE-I & II OFFERED FOR R19 M.TECH PROGRAMMES (CSE, EEE)

		CO2: Discuss the intellectual origins of the
		framework of argument that informed the
		conceptualization of social reforms leading to
		revolution in India.
		CO3: Discuss the circumstances surrounding the
		foundation of the Congress Socialist Party
		[CSP] under the leadership of Jawaharlal Nehru
		and the eventual failure of the proposal of
		direct elections through adult suffrage in the
		Indian Constitution.
		CO4: Discuss the passage of the Hindu Code Bill of
		1956.
		At the end of this course, each student should be
		able to:
		CO1: What pedagogical practices are being used by
		teachers in formal and informal classrooms in
		developing countries?
Audit Course	Pedagogy Studies	CO2: What is the evidence on the effectiveness of
1&11		these pedagogical practices, in what conditions,
		and with what population of learners?
		CO3: How can teacher education (curriculum and
		practicum) and the school curriculum and
		guidance materials best support effective
		pedagogy?
	Stress Management by yoga	At the end of this course, each student should be
Audit Course		able to:
I & II		CO1: Develop healthy mind in a healthy body thus
		improving social health also
		CO2: Improve efficiency
		At the end of this course, each student should be
	Personality Development Through Life	able to:
Audit Course I & II		CO1: Study of Shrimad-Bhagwad-Geeta will help the
		student in developing his personality and
		achieve the highest goal in life
	Enlightenment Skills	CO2: The person who has studied Geeta will lead the
		nation and mankind to peace and prosperity
		CO3: Study of Neetishatakam will help in developing
		versatile personality of students

Course Code	Course Title / Name	Course Outcomes
		At the end of this course, each student should be
		able to:
		CO1: Know the approximations in any calculations
		and solutions to equations
Open Flective	Numerical methods	CO2: Solve simultaneous equations using matrix
open Licenve		methods
		CO3: Calculate differentiation and integration
		problems using numerical methods
		CO4: Solve ordinary and partial differential
		equations
		At the end of this course, each student should be
		able to:
		C01: Plan, coordinate and control of project from
		beginning to completion.
Open Elective	Construction Management	CO2: Distinguish different types of contracts that can
		be used for a project
		CO3: Adopt the most effect method for meeting the
		requirement in order to produce a functionally
		and financially viable project.
		At the end of this course, each student should be
		CO1: To understand the fundamental theory of the
Open Elective	Finite Element Methods	Finite Flomont Method
		CO2 : To apply the Finite Flement theory to solve soil
		behavior under external loads
		At the end of this course each student should be
	Artificial Intelligence: Techniques	able to
		C01 : Asses the applicability strengths and weakness
		of problems and methods for particular
Open Elective		engineering problem.
		CO2: Develop intelligent system for particular
		problem.
		CO3: Understand the concepts of Fuzzy logic,
		Applications in water resource engineering.
		At the end of this course, each student should be
Open Elective	Operation Research	able to:
		CO1: Apply the dynamic programming to solve

LIST OF OPEN ELECTIVES OFFERED FOR R19 M.TECH PROGRAMMES (CSE,EEE)

		problems of discreet and continuous variables.
		CO2: Apply the concept of non-linear programming
		CO3: Carry out sensitivity analysis
		CO4: Model the real-world problem and simulate it.
		At the end of this course, each student should be
		able to:
		CO1: Know how to take safety measures in executing
On on Floativo	Industrial Safaty	works
Open Elective	industrial Safety	CO2: Identify the need for maintenance (or)
		replacement of equipment
		CO3: Understand the need for periodic and
		preventive maintenance
		At the end of this course, each student should be
		able to:
		C01: Interpret the Environment Protection (EP) Act
		1986.
	Environmental Logislation	CO2: Interpret the Water Act 1974 and Water Cess
Open Elective	environmental Legislation	Act
	a nutit	CO3: Interpret the Air Act 1981.
		CO4: Interpret the Hazardous waste Act 1989
		CO5: Analyze the 'Environmental Audit' done of an
		Industry and debate the method used to do so.
		CO6: Undertake Environmental Audit
		At the end of this course, each student should be
	GIS & IoT For Planning & Policy Making for Smart Cities/Urban Areas	able to:
		CO1: The importance of National and International
		policies for smart cities
Open Elective		CO2: Applications of with GIS for urban cities.
		CO3: Applications of IoT for smart cities
		CO3: The concepts of GIS and IoT at analytics level.
		CO4: Applications of IoT and GIS to reduce
		congestion and pollution in urban cities.
	Disaster Management	At the end of this course, each student should be
Open Elective		able to:
		CO1: Understanding Disasters, man-made
		Hazards and Vulnerabilities.
		CO2: Understanding disaster management
		mechanism.
		CO3: Understanding capacity building concepts

		and planning of disaster managements.
		At the end of this course, each student should be
		able to:
		CO1: Understand the various disasters and their
		impact
		CO2: Understand the urban policies related to
Open Elective	Disaster Analytics	disaster
		CO3: Find methods to monitor disasters
		CO4: Understand ways to quantify and plan
		infrastructure
		CO5: Understand the concepts of Mapping and
		measuring disasters
		At the end of this course, each student should be
		able to:
		CO1: Explain various reasons for employing
		automation in a manufacturing environment
		and describe various applications.
		CO2: Describe the basic function of a sensor and an
		actuator in an automated system and give
		examples of both categories.
	Principles of Automation	CO3: Select an appropriate sensor and/or actuator
		for a given automated application.
		CO4: Describe the fundamentals of NC technology.
Open Elective		CO5: Use a Programmable Logic Controller (PLC)
		and embedded microcontroller, to perform
		specified control functions.
		CO6: Describe the basic anatomy and attributes of an
		industrial robot.
		C07: Identify and distinguish the different
		components and interfaces in a Flexible
		Manufacturing System.
		CO8: Troubleshoot a system and take appropriate
		action(s) to resolve the issue(s).
		CO9: Design an automated system to meet defined
		operational specifications.
		At the end of this course, each student should be
Opon Floctivo	Artificial Neural	able to:
Open Elective	Networks	CO1: To understand artificial neural network models
		and their training algorithms

		CO2: To understand the concept of fuzzy logic
		system components, fuzzification and
		defuzzification
		CO3: Applies the above concepts to real-world
		problems and applications.
		At the end of this course, each student should be
	Fundamentals	able to:
Open Elective	of Nano	CO1: To understand the evolution of Nano systems,
0 p 0 1 2 1 0 0 1 0	Technology	and various fabrication techniques.
		CO2: Learn about nano materials and various nano
		measurements techniques.
	Concurrent Engineering	At the end of this course, each student should be able to: CO1: Understand the need of concurrent engineering and strategic approaches for product design.
Open Elective		CO2: Apply concurrent design principles to product
open licetive		design.
		CO3: Design assembly workstation using concepts of
		simultaneous engineering.
		CO4: Design automated fabricated systems – Case
		studies.
	Mechanics of Composite Materials	At the end of this course, each student should be
		able to:
		CO1: Understanding of types, manufacturing
		processes, and applications of composite
		materials.
		CO2: Basic understanding of linear elasticity with
		emphasis on the difference between isotropic
		and anisotropic material behavior.
Open Elective		CO3: Ability to analyze problems on macro and
*		micro mechanical behavior of lamina
		CO4: Ability to analyze problems on macro
		mechanical behavior of laminate
		CO5: An ability to predict the loads and moments
		that cause an individual composite layer and a
		composite laminate to fail and to compute
		hygro thermal loads in composites.
		CU6: An ability to compute the properties of a
		composite laminate with any stacking

		sequence.
		At the end of this course, each student should be
		able to:
		Understood and acquired fundamental knowledge on
		the science and engineering of energy technologies
		and systems. Acquired the expertise and skills
		required for energy auditing and management,
Open Elective	Waste to Energy	economical calculation of energy cost, development,
		implementation, maintenance of energy systems.
		Become capable of analysis and design of energy
		conversion systems. Acquired skills in the scientific
		and technological communications and project
		preparation, planning and implementation of energy
		projects
		At the end of this course, each student should be
		able to:
		C01: Understand the need of concurrent engineering
		and strategic approaches for product design.
Open Flective	Concurrent	CO2: Apply concurrent design principles to product
Open Liective	Engineering	design.
		CO3: Design assembly workstation using concepts of
		simultaneous engineering.
		CO4: Design automated fabricated systems – Case
		studies.
		At the end of this course, each student should be
		able to:
		C01: Understand characteristics, and working
		principle of different types of Power electronic
		devices and their applications.
		CO2: Analyse the various Triggering and
	Principles of Automation	Commutation methods of Thyristors.
Open Elective		CO3: Describe the working of Choppers, Inverters
		and cycloconverter circuits and their
		applications.
		CO4: Select Thyristors circuits for various industrial
		/ controlled applications.
		CO5: Understand basic concepts of PLC and develop
		application programs.
		CO6: Identify and interpret the functionality of DCS

		and various elements of SCADA.
		At the end of this course, each student should be
		able to:
		CO1: To assess the commercial viability of a new
		technology-based idea. The candidate can use
	Entrepreneurship	various methods and tools for this purpose.
		CO2: To transform research-based ideas into
		feasibility and business plans. The candidate
Open Elective		can use (tacit and explicit) methods and tools
		for this purpose.
		CO3: To present new ideas to the market.
		CO4: To assess the need for innovation, initiate the
		process and run innovations in organizations.
		CO5: To seize opportunities, organize and finance
		viable initiatives through to fruition.
		At the end of this course, each student should be
		able to:
		C01: Apply appropriate optimization techniques and
		solve optimization problem like single variable
		or multivariable
		CO2: Make sensitivity analysis to study effect of
		changes in parameters of LPP on the optimal
	Ontimization	solution without reworking.
Open Flective	Techniques & Applications	CO3: Simulate the system to estimate specified
Open Elective		performance measures.
		CO4: Solve integer programming problem by either
		geometry cutting plane algorithm or branch
		band method.
		CO5: Apply chance constrained algorithm and solve
		stochastic linear programme.
		CO6: Formulate GP model and solve it.
		C07: Solve given optimization problem by genetic
		algorithm or simulated annealing or PSO.
		At the end of this course, each student should be
Open Elective	Advanced Finite Element and Boundary Element Methods	able to:
		C01: Understand the background of mathematical
		equations used for development of modeling
		software modules to develop the various
		structural related applications

		CO2: Identify mathematical model for solution of
		common engineering problems.
		CO3: Solve structural, thermal, fluid flow problems.
		CO4: Use professional-level finite element software
		to solve engineering problems in Solid
		mechanics, fluid mechanics and heat transfer.
		At the end of this course, each student should be
		able to:
		CO1: Acquire fundamental knowledge and
		understanding of Production and Industrial
		Engineering.
		CO2: Acquire abilities and capabilities in the areas of
		advanced manufacturing methods, quality
		assurance and shop floor management.
		CO3: Formulate relevant research problems; conduct
Onen Elective	Fundamentals of	experimental and/or analytical work and
open Licenve	Production Engineering	analyzing results using modern mathematical
		and scientific methods.
		CO4: Review and document the knowledge
		developed by scholarly predecessors and
		critically assess the relevant technological
		issues.
		C05: Design and validate technological solutions to
		defined problems and write clearly and
		effectively for the practical utilization of their
		work.
		At the end of this course, each student should be
	Testing & Evaluation	able to:
		CO1: Explain central concepts and issues in language
		testing, such as basic types of language tests
Open Elective		(and their specific features).
		CO2: Explain central concepts and issues in
		evaluation of language proficiency.
		CO3: Understand the key principles of test
		construction and validation, and apply them in
		the development of a specific language test.
		CU4: Administer a language test and analyse its
		results.
		CU5: Appraise validity and reliability aspects of

		language testing.
		At the end of this course, each student should be
		able to:
		CO1: Illustrate the basic concepts of refrigeration
		system.
	Pasias of Defrigonation	CO2: Analyze the vapour compression cycle and
Open Elective	Systems	interpret the usage of refrigerants.
	Systems	CO3: Explain the components of vapour absorption
		system.
		CO4: Demonstrate the use of refrigerants.
		CO5: Discuss the theory Ozone depletion potential
		and global warming potential.
		At the end of this course, each student should be
		able to:
		C01: To be able to state the types-energy storage
		devices – comparison of energy storage
		technologies.
		CO2: To be able to identify and describe Basic
		concepts and modeling of heat storage units –
		modeling of simple water and rock bed storage
Open Elective	Storage Systems	system.
	Storage Systems	CO3: To be able to explain at a level understandable
		by a non-technical person how various Parallel
		flow and counter flow regenerators.
		CO4: To be able to calculate Modeling of phase
		change problems.
		CO5: To be able to explain greenhouse heating –
		power plant applications – drying and heating
		for process industries.
	Cogeneration & Waste Heat Recovery Systems	At the end of this course, each student should be
		able to:
Open Elective		C01: Analyze the basic energy generation cycles
		CO2: Do the economic analysis of waste heat
		recovery systems
Open Elective		At the end of this course, each student should be
		able to:
	Business Analytics	C01: Students will demonstrate knowledge of data
		analytics.
		critically in making decisions based on data
		critically in making decisions based on data

		and deep analytics.
		CO3: Students will demonstrate the ability to use
		technical skills in predicative and prescriptive
		modeling to support business decision-making.
		CO4: Students will demonstrate the ability to
		translate data into clear, actionable insights.
		a anotaco data mito croar, actionabre morginor
		At the end of this course, each student should be
		able to:
		C01: Know how to take safety measures in executing
		works
Open Elective	Industrial Safety	CO2: Identify the need for maintenance (or)
		replacement of equipment
		CO3: Understand the need for periodic and
		preventive maintenance
		At the end of this course, each student should be
		able to:
		CO1: Students should able to apply the dynamic
		programming to solve problems of discreet and
		continuous variables.
Open Elective	Operations Research	CO2: Students should able to apply the concept of
		non-linear programming
		CO3: Students should able to carry out sensitivity
		analysis
		CO4: Student should able to model the real-world
		problem and simulate it.
		At the end of this course, each student should be
	Cost Management of Engineering Projects	able to:
		C01: Understand project characteristics and various
		stages of a project.
		CO2: Understand the conceptual clarity about
Open Flective		project organization and feasibility analyses –
Open Elective		Market, Technical, Financial and Economic.
		CO3: Analyze the learning and understand
		Execution Control.
		CO4: Apply the risk management plan and analyse
		the role of stakeholders.
		C05: Understand the contract management, Project

		Procurement, Service level Agreements and productivity. CO6: Understand the How Subcontract Administration and Control are practiced in the Industry.
		At the end of this course, each student should be
		able to:
		CO1: Explain the mechanical behavior of layered
	Composite Materials	composites compared to isotropic materials.
Open Elective		CO2: Apply constitutive equations of composite
		materials and understand mechanical behavior
		at micro and macro levels.
		CO3: Determine stresses and strains relation in
		composites materials.
		At the end of this course, each student should be
	Energy from Waste	able to:
		CO1: Apply the knowledge about the operations of
		Waste to Energy Plants.
On an Elective		CO2: Analyse the various aspects of Waste to Energy
Open Elective		Management Systems.
		CO3: Carry out Techno-economic feasibility for
		Waste to Energy Plants.
		CO4: Apply the knowledge in planning and
		operations of Waste to Energy plants.