

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE OUTCOMES (COs)

M.Tech. I Year I Sem R19 Syllabus Computer Science and Engineering

Course Code	Course Title / Name	Course Outcomes
Professional Core - I	Mathematical Foundations of Computer Science	 At the end of this course, each student should be able to: CO1: To understand the basic notions of discrete and continuous probability. CO2: To understand the methods of statistical inference, and the role that sampling distributions play in those methods. CO3: To be able to perform correct and meaningful statistical analyses of simple to moderate complexity.
Professional Core - II	Advanced Data Structures	 At the end of this course, each student should be able to: CO1: Understand the implementation of symbol table using hashing techniques CO2: Develop algorithms for text processing applications. CO3: Identify suitable data structures and develop algorithms for computational geometry problems.
Professional Elective - I	Information Security	 At the end of this course, each student should be able to: C01: Demonstrate the knowledge of cryptography, network security concepts and applications. C02: Ability to apply security principles in system design. C03: Ability to identify and investigate

	vulnerabilities and security threats and
	mechanisms to counter them.
	At the end of this course, each student should be
	able to:
	CO1: Student understands the working of Android
Mobile Application	OS Practically.
	CO2: Student will be able to develop Android user
1	interfaces
	CO3: Student will be able to develop, deploy and
	maintain the Android Applications.
	At the end of this course, each student should be
	able to:
	CO1: Extract features that can be used for a
	particular machine learning approach in
	various IOT applications.
Machine Learning	CO2: To compare and contrast pros and cons of
	various machine learning techniques and to get
	an insight of when to apply a particular
	machine learning approach.
	CO3: To mathematically analyse various machine
	learning approaches and paradigms.
	At the end of this course, each student should be
Network Security	able to:
	CO1: To understand basics of security and issues
	related to it.
	CO2: Understanding of biometric techniques
	available and how they are used in today's
	world.
	CO3: Security issues in web and how to tackle them.
	CO4: Learn mechanisms for transport and network
	security.
Cloud Computing	At the end of this course, each student should be
	able to:
	CO1: Identify security aspects of each cloud model
	CO2: Develop a risk-management strategy for
	moving to the Cloud
	CO3: Implement a public cloud instance using a
	public cloud service provider
	Network Security

		CO4: Apply trust-based security model to different
		layer
		At the end of this course, each student should be
		able to:
		CO1: Ability to perform the preprocessing of data
		and apply mining techniques on it.
Professional	Data Mining	CO2: Ability to identify the association rules,
Elective - II		classification and clusters in large data sets.
		CO3: Ability to solve real world problems in business and scientific information using data mining
		CO4: Ability to classify web pages, extracting
		knowledge from the web
		At the end of this course, each student should be
		able to:
		C01: Ability to select the data structures that
		efficiently model the information in a problem.
	Advanced Data Structures Lab	CO2: Ability to assess efficiency trade-offs among
Lab - I		different data structure implementations or
		combinations.
		CO3: Implement and know the application of
		algorithms for sorting and pattern matching. CO4: Design programs using a variety of data
		structures, including hash tables, binary and
		general tree structures, search trees, tries,
		heaps, graphs, and B-trees.
		At the end of this course, each student should be
	Machine Learning Lab	able to:
		C01: Understand complexity of Machine Learning
		algorithms and their limitations;
		CO2: Understand modern notions in data analysis-
Lab - II		oriented computing;
		CO3: Be capable of confidently applying common
		Machine Learning algorithms in practice and
		implementing their own;
		CO4: Be capable of performing experiments in
		Machine Learning using real-world data.

	Research Methodology & IPR	 At the end of this course, each student should be able to: CO1: Understand research problem formulation. CO2: Analyze research related information CO3: Follow research ethics CO4: Understand that today's world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity. CO5: Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular. CO6: Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about economic growth and social
Audit - I	Audit Course - I	creation of new and better products, and in turn brings about, economic growth and social benefits.

Course Code	Course Title / Name	Course Outcomes
Professional Core - III	Advanced Algorithms	 At the end of this course, each student should be able to: CO1: Analyze the complexity/performance of different algorithms. CO2: Determine the appropriate data structure for solving a particular set of problems. CO3: Categorize the different problems in various classes according to their complexity. CO4: Students should have an insight of recent activities in the field of the advanced data structure.
Professional Core - IV	Advanced Computer Architecture	 At the end of this course, each student should be able to: CO1: Computational models and Computer Architectures. CO2: Concepts of parallel computer models. CO3: Scalable Architectures, Pipelining, Superscalar processors, multiprocessors
Professional Elective - III	Web and Database Security	 At the end of this course, each student should be able to: CO1: Understand the Web architecture and applications CO2: Understand client side and service side programming CO3: Understand how common mistakes can be bypassed and exploit the application CO4: Identify common application vulnerabilities
Professional Elective - III	Internet of Things	 At the end of this course, each student should be able to: CO1: Interpret the impact and challenges posed by IoT networks leading to new architectural models. CO2: Compare and contrast the deployment of smart objects and the technologies to connect them to network.

M.Tech. I Year II Sem R19 Syllabus Computer Science and Engineering

		 CO3: Appraise the role of IoT protocols for efficient network communication. CO4: Elaborate the need for Data Analytics and Security in IoT. CO5: Illustrate different sensor technologies for sensing real world entities and identify the applications of IoT in Industry.
		At the end of this course, each student should be
		able to:
Professional Elective - III	Data Science	 CO1: Explain how data is collected, managed and stored for data science; CO2: Understand the key concepts in data science, including their real-world applications and the toolkit used by data scientists CO3: Implement data collection and management acriate using ManageDB.
		scripts using MongoDB At the end of this course, each student should be
		able to:
Professional Elective - IV	Cyber Security	 CO1: Analyze and resolve security issues in networks and computer systems to secure an IT infrastructure. CO2: Design, develop, test and evaluate secure software. CO3: Develop policies and procedures to manage enterprise security risks. CO4: Evaluate and communicate the human role in security systems with an emphasis on ethics, social engineering vulnerabilities and training. CO5: Interpret and forensically investigate security incidents.
Professional Elective - IV	Advanced Computer Networks	At the end of this course, each student should be able to: C01: Understanding of holistic approach to computer networking C02: Ability to understand the computer networks and their application C03: Ability to design simulation concepts related to

		packet forwarding in networks
		At the end of this course, each student should be
		able to:
		CO1: Identify Big Data and its Business Implications.
		CO2: List the components of Hadoop and Hadoop
		Eco-System
		CO3: Access and Process Data on Distributed File
Professional	Big Data Analytics	System
Elective - IV		CO4: Manage Job Execution in Hadoop Environment
		CO5: Develop Big Data Solutions using Hadoop Eco
		System
		CO6: Analyze Infosphere BigInsights Big Data
		Recommendations.
		CO7: Apply Machine Learning Techniques using R.
		At the end of this course, each student should be
		able to:
		CO1: Design and analyze programming problem
	Advanced Algorithms Lab	statements.
		CO2: Choose appropriate data structures and
		algorithms, understand the ADT/libraries, and
		use it to design algorithms for a specific
Lab - III		problem.
		CO3: Understand the necessary mathematical
		abstraction to solve problems.
		CO4: Come up with analysis of efficiency and proofs
		of correctness
		CO5: Comprehend and select algorithm design
		approaches in a problem specific manner.
		At the end of this course, each student should be
		able to:
		CO1: Students will develop relevant programming
Lab - IV		abilities.
		CO2: Students will demonstrate proficiency with
	Data Science Lab	statistical analysis of data.
		CO3: Students will develop the ability to build and
		assess data-based models.
		CO4: Students will execute statistical analyses with
		professional statistical software.

		CO5: Students will demonstrate skill in data
		management.
		CO6: Students will apply data science concepts and
		methods to solve problems in real-world
		contexts and will communicate these solutions
		effectively
		At the end of this course, each student should be
		able to:
		CO1: Demonstrate a sound technical knowledge of
		their selected mini project topic.
		CO2: Undertake problem identification, formulation
	Mini Project with Seminar	and solution.
	with roject with Schinar	CO3: Design engineering solutions to complex
		problems utilising a systems approach.
		CO4: Communicate with engineers and the
		community at large.
		C05: Demonstrate the knowledge, skills and
		attitudes of a professional engineer
Audit - II	Audit Course - II	

Course Code	Course Title / Name	Course Outcomes
		At the end of this course, each student should be
		able to:
		CO1: Understand relevant legislation and codes of
Professional		ethics.
Elective - V	Digital Forensics	CO2: Computer forensics and digital detective and
		various processes, policies and procedures.
		CO3: E-discovery, guidelines and standards, E-
		evidence, tools and environment.
		CO4: Email and web forensics and network forensics.
		At the end of this course, each student should be
		able to:
		CO1: Understanding the concepts in grid computing
Professional	High Performance	CO2: Ability to set up cluster and run parallel
Elective - V	Computing	applications CO3: Ability to understand the cluster projects and
		cluster OS
		CO4: Understanding the concepts of pervasive
		computing & quantum computing.
		At the end of this course, each student should be
	Deep Learning	able to:
		CO1: Ability to understand the concepts of Neural
		Networks
Professional		CO2: Ability to select the Learning Networks in
Elective - V		modeling real world systems
		CO3: Ability to use an efficient algorithm for Deep
		Models
		CO4: Ability to apply optimization strategies for
		large scale applications
Open Elective	Open Elective	

M.Tech. II Year III Sem R19 Syllabus Computer Science and Engineering

Course Code	Course Title / Name	Course Outcomes
		At the end of this course, each student should be
		able to:
		CO1: Understand relevant legislation and codes of
Audit Course	English for Research	ethics.
I & II	Paper Writing	CO2: Computer forensics and digital detective and
1 & 11		various processes, policies and procedures.
		CO3: E-discovery, guidelines and standards, E-
		evidence, tools and environment.
		CO4: Email and web forensics and network forensics.
		At the end of this course, each student should be
		able to:
		CO1: Understanding the concepts in grid computing
Audit Course		CO2: Ability to set up cluster and run parallel
I & II	Disaster Management	applications
		CO3: Ability to understand the cluster projects and
		cluster OS
		CO4: Understanding the concepts of pervasive
		computing & quantum computing.
		At the end of this course, each student should be able to:
		CO1: Understanding basic Sanskrit language
Audit Course	Sanskrit for Technical	CO2: Ancient Sanskrit literature about science &
I & II	Knowledge	technology can be understood
		CO3: Being a logical language will help to develop
		logic in students
		At the end of this course, each student should be
	Value Education	able to:
Audit Course		CO1: Knowledge of self-development
I & II		CO2: Learn the importance of Human values
		CO3: Developing the overall personality
Audit Course I & II	Constitution of India	At the end of this course, each student should be
		able to:
		CO1: Discuss the growth of the demand for civil
		rights in India for the bulk of Indians before the
		arrival of Gandhi in Indian politics.

LIST OF AUDIT COURSE-I & II OFFERED FOR R19 M.TECH PROGRAMMES (CSE, EEE)

		 CO2: Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India. CO3: Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution. CO4: Discuss the passage of the Hindu Code Bill of 1956.
Audit Course I & II	Pedagogy Studies	 At the end of this course, each student should be able to: CO1: What pedagogical practices are being used by teachers in formal and informal classrooms in developing countries? CO2: What is the evidence on the effectiveness of these pedagogical practices, in what conditions, and with what population of learners? CO3: How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?
Audit Course I & II	Stress Management by yoga	At the end of this course, each student should be able to: CO1: Develop healthy mind in a healthy body thus improving social health also CO2: Improve efficiency
Audit Course I & II	Personality Development Through Life Enlightenment Skills	 At the end of this course, each student should be able to: CO1: Study of Shrimad-Bhagwad-Geeta will help the student in developing his personality and achieve the highest goal in life CO2: The person who has studied Geeta will lead the nation and mankind to peace and prosperity CO3: Study of Neetishatakam will help in developing versatile personality of students

Course Code	Course Title / Name	Course Outcomes
Open Elective	Numerical methods	 At the end of this course, each student should be able to: C01: Know the approximations in any calculations and solutions to equations C02: Solve simultaneous equations using matrix methods C03: Calculate differentiation and integration problems using numerical methods C04: Solve ordinary and partial differential equations
Open Elective	Construction Management	 At the end of this course, each student should be able to: CO1: Plan, coordinate and control of project from beginning to completion. CO2: Distinguish different types of contracts that can be used for a project CO3: Adopt the most effect method for meeting the requirement in order to produce a functionally and financially viable project.
Open Elective	Finite Element Methods	 At the end of this course, each student should be able to: CO1: To understand the fundamental theory of the Finite Element Method CO2: To apply the Finite Element theory to solve soil behavior under external loads.
Open Elective	Artificial Intelligence: Techniques	 At the end of this course, each student should be able to: CO1: Asses the applicability, strengths and weakness of problems and methods for particular engineering problem. CO2: Develop intelligent system for particular problem. CO3: Understand the concepts of Fuzzy logic, Applications in water resource engineering.
Open Elective	Operation Research	At the end of this course, each student should beable to:CO1: Apply the dynamic programming to solve

LIST OF OPEN ELECTIVES OFFERED FOR R19 M.TECH PROGRAMMES (CSE,EEE)

		problems of discreet and continuous variables.
		CO2: Apply the concept of non-linear programming CO3: Carry out sensitivity analysis
		CO3: Carry out sensitivity analysis CO4: Model the real-world problem and simulate it.
		At the end of this course, each student should be
		able to:
	Industrial Safety	C01: Know how to take safety measures in executing
Open Elective		works
		CO2: Identify the need for maintenance (or)
		replacement of equipment CO3: Understand the need for periodic and
		preventive maintenance
		At the end of this course, each student should be
		able to:
		CO1: Interpret the Environment Protection (EP) Act
		1986.
	Environmental Legislation	CO2: Interpret the Water Act 1974 and Water Cess
Open Elective		Act
	& Audit	CO3: Interpret the Air Act 1981.
		CO4: Interpret the Hazardous waste Act 1989
		CO5: Analyze the 'Environmental Audit' done of an
		Industry and debate the method used to do so.
		CO6: Undertake Environmental Audit
		At the end of this course, each student should be
		able to:
	GIS & IoT For Planning & Policy Making for Smart Cities/Urban Areas	C01: The importance of National and International
		policies for smart cities
Open Elective		CO2: Applications of with GIS for urban cities.
		CO3: Applications of IoT for smart cities
		CO3: The concepts of GIS and IoT at analytics level.
		CO4: Applications of IoT and GIS to reduce
		congestion and pollution in urban cities.
Open Elective	Disaster Management	At the end of this course, each student should be
		able to:
		CO1: Understanding Disasters, man-made
		Hazards and Vulnerabilities.
		CO2: Understanding disaster management
		mechanism.
		CO3: Understanding capacity building concepts

		and planning of disaster managements.
		At the end of this course, each student should be
		able to:
		CO1: Understand the various disasters and their
		impact
		CO2: Understand the urban policies related to
Open Elective	Disaster Analytics	disaster
•	-	CO3: Find methods to monitor disasters
		CO4: Understand ways to quantify and plan
		infrastructure
		CO5: Understand the concepts of Mapping and
		measuring disasters
		At the end of this course, each student should be
		able to:
		CO1: Explain various reasons for employing
		automation in a manufacturing environment
		and describe various applications.
		CO2: Describe the basic function of a sensor and an
		actuator in an automated system and give
		examples of both categories.
		CO3: Select an appropriate sensor and/or actuator
		examples of both categories. CO3: Select an appropriate sensor and/or actuator for a given automated application. CO4: Describe the fundamentals of NC technology.
	Principles of	
Open Elective	Automation	CO5: Use a Programmable Logic Controller (PLC)
		and embedded microcontroller, to perform
		specified control functions.
		CO6: Describe the basic anatomy and attributes of an
		industrial robot.
		CO7: Identify and distinguish the different
		components and interfaces in a Flexible
		Manufacturing System.
		CO8: Troubleshoot a system and take appropriate
		action(s) to resolve the issue(s).
		CO9: Design an automated system to meet defined
		operational specifications.
Open Elective		At the end of this course, each student should be
	Artificial Neural	able to:
	Networks	CO1: To understand artificial neural network models
		and their training algorithms

Open Elective	Fundamentals of Nano Technology	 CO2: To understand the concept of fuzzy logic system components, fuzzification and defuzzification CO3: Applies the above concepts to real-world problems and applications. At the end of this course, each student should be able to: CO1: To understand the evolution of Nano systems, and various fabrication techniques. CO2: Learn about nano materials and various nano measurements techniques.
Open Elective	Concurrent Engineering	 At the end of this course, each student should be able to: CO1: Understand the need of concurrent engineering and strategic approaches for product design. CO2: Apply concurrent design principles to product design. CO3: Design assembly workstation using concepts of simultaneous engineering. CO4: Design automated fabricated systems – Case studies.
Open Elective	Mechanics of Composite Materials	 At the end of this course, each student should be able to: C01: Understanding of types, manufacturing processes, and applications of composite materials. C02: Basic understanding of linear elasticity with emphasis on the difference between isotropic and anisotropic material behavior. C03: Ability to analyze problems on macro and micro mechanical behavior of lamina C04: Ability to analyze problems on macro mechanical behavior of laminate C05: An ability to predict the loads and moments that cause an individual composite layer and a composite laminate to fail and to compute hygro thermal loads in composites. C06: An ability to compute the properties of a composite laminate with any stacking

		sequence.
		At the end of this course, each student should be
		able to:
		Understood and acquired fundamental knowledge on
		the science and engineering of energy technologies
		and systems. Acquired the expertise and skills
		required for energy auditing and management,
Open Elective	Waste to Energy	economical calculation of energy cost, development,
		implementation, maintenance of energy systems.
		Become capable of analysis and design of energy
		conversion systems. Acquired skills in the scientific
		and technological communications and project
		preparation, planning and implementation of energy
		projects
		At the end of this course, each student should be
		able to:
		CO1: Understand the need of concurrent engineering
		and strategic approaches for product design.
Open Elective	Concurrent	CO2: Apply concurrent design principles to product
1	Engineering	design.
		CO3: Design assembly workstation using concepts of
		simultaneous engineering.
		CO4: Design automated fabricated systems – Case
		studies.
		At the end of this course, each student should be able to:
		CO1: Understand characteristics, and working
		principle of different types of Power electronic
		devices and their applications.
		CO2: Analyse the various Triggering and
		Commutation methods of Thyristors.
Open Elective	Principles of	CO3: Describe the working of Choppers, Inverters
	Automation	and cycloconverter circuits and their
		applications.
		CO4: Select Thyristors circuits for various industrial
		/ controlled applications.
		CO5: Understand basic concepts of PLC and develop
		application programs.
		CO6: Identify and interpret the functionality of DCS

		and various elements of SCADA.
		At the end of this course, each student should be
		able to:
		CO1: To assess the commercial viability of a new
		technology-based idea. The candidate can use
		various methods and tools for this purpose.
		CO2: To transform research-based ideas into
		feasibility and business plans. The candidate
Open Elective	Entrepreneurship	can use (tacit and explicit) methods and tools
		for this purpose.
		CO3: To present new ideas to the market.
		CO4: To assess the need for innovation, initiate the
		process and run innovations in organizations.
		C05: To seize opportunities, organize and finance
		viable initiatives through to fruition.
		At the end of this course, each student should be
		able to:
		CO1: Apply appropriate optimization techniques and
		solve optimization problem like single variable
		or multivariable
		CO2: Make sensitivity analysis to study effect of
		changes in parameters of LPP on the optimal
	Optimization	solution without reworking.
Open Elective	Techniques &	CO3: Simulate the system to estimate specified
open Licenve	Applications	performance measures.
	Applications	 CO2: Make sensitivity analysis to study effect of changes in parameters of LPP on the optimal solution without reworking. CO3: Simulate the system to estimate specified performance measures. CO4: Solve integer programming problem by either geometry cutting plane algorithm or branch band method.
		geometry cutting plane algorithm or branch
		band method.
		CO5: Apply chance constrained algorithm and solve
		stochastic linear programme.
		CO6: Formulate GP model and solve it.
		C07: Solve given optimization problem by genetic
		algorithm or simulated annealing or PSO.
Open Elective		At the end of this course, each student should be
	Advanced Finite	able to:
	Element and Boundary Element Methods	CO1: Understand the background of mathematical
		equations used for development of modeling
		software modules to develop the various
		structural related applications

		 CO2: Identify mathematical model for solution of common engineering problems. CO3: Solve structural, thermal, fluid flow problems. CO4: Use professional-level finite element software to solve engineering problems in Solid
		mechanics, fluid mechanics and heat transfer.
		At the end of this course, each student should be able to:
		CO1: Acquire fundamental knowledge and
		understanding of Production and Industrial
Open Elective	Fundamentals of Production Engineering	Engineering. CO2: Acquire abilities and capabilities in the areas of advanced manufacturing methods, quality assurance and shop floor management. CO3: Formulate relevant research problems; conduct
		experimental and/or analytical work and analyzing results using modern mathematical and scientific methods.
		 analyzing results using modern mathematical and scientific methods. CO4: Review and document the knowledge developed by scholarly predecessors and critically assess the relevant technological issues. CO5: Design and validate technological solutions to defined problems and write clearly and
		work.
		At the end of this course, each student should be
		able to:
		 issues. CO5: Design and validate technological solutions to defined problems and write clearly and effectively for the practical utilization of their work. At the end of this course, each student should be
Open Elective		
		CO2: Explain central concepts and issues in
	Testing & Evaluation	evaluation of language proficiency.
		CO3: Understand the key principles of test
		construction and validation, and apply them in the development of a specific language test.
		CO4: Administer a language test and analyse its
		results.
		CO5: Appraise validity and reliability aspects of

		language testing.
		At the end of this course, each student should be
		able to:
		CO1: Illustrate the basic concepts of refrigeration
		system.
		CO2: Analyze the vapour compression cycle and
Open Elective	Basics of Refrigeration	interpret the usage of refrigerants.
	Systems	CO3: Explain the components of vapour absorption
		system.
		CO4: Demonstrate the use of refrigerants.
		CO5: Discuss the theory Ozone depletion potential
		and global warming potential.
		At the end of this course, each student should be
		able to:
		CO1: To be able to state the types-energy storage
		devices – comparison of energy storage
		technologies.
		CO2: To be able to identify and describe Basic
		concepts and modeling of heat storage units –
		modeling of simple water and rock bed storage
Open Elective	Introduction to Thermal	system.
Open Liective	Storage Systems	CO3: To be able to explain at a level understandable
		by a non-technical person how various Parallel
		flow and counter flow regenerators.
		CO4: To be able to calculate Modeling of phase
		change problems.
		CO5: To be able to explain greenhouse heating – power plant applications – drying and heating
		for process industries.
		At the end of this course, each student should be able to:
On an Elective	Cogeneration & Waste	
Open Elective	Heat Recovery Systems	CO1: Analyze the basic energy generation cycles
		CO2: Do the economic analysis of waste heat
		recovery systems
Open Elective		At the end of this course, each student should be
		able to:
	Business Analytics	CO1: Students will demonstrate knowledge of data
		analytics. CO2: Students will demonstrate the ability of think
		critically in making decisions based on data
	L	Cifically in making uccisions based on data

		and deep analytics. CO3: Students will demonstrate the ability to use technical skills in predicative and prescriptive modeling to support business decision-making. CO4: Students will demonstrate the ability to translate data into clear, actionable insights.
Open Elective	Industrial Safety	 At the end of this course, each student should be able to: CO1: Know how to take safety measures in executing works CO2: Identify the need for maintenance (or) replacement of equipment CO3: Understand the need for periodic and preventive maintenance
Open Elective	Operations Research	 At the end of this course, each student should be able to: CO1: Students should able to apply the dynamic programming to solve problems of discreet and continuous variables. CO2: Students should able to apply the concept of non-linear programming CO3: Students should able to carry out sensitivity analysis CO4: Student should able to model the real-world problem and simulate it.
Open Elective	Cost Management of Engineering Projects	 At the end of this course, each student should be able to: CO1: Understand project characteristics and various stages of a project. CO2: Understand the conceptual clarity about project organization and feasibility analyses – Market, Technical, Financial and Economic. CO3: Analyze the learning and understand techniques for Project planning, scheduling and Execution Control. CO4: Apply the risk management plan and analyse the role of stakeholders. CO5: Understand the contract management, Project

		Procurement, Service level Agreements and productivity. CO6: Understand the How Subcontract Administration and Control are practiced in the Industry.
		At the end of this course, each student should be
		able to:
		CO1: Explain the mechanical behavior of layered
Open Elective	Composito Matoriale	composites compared to isotropic materials. CO2: Apply constitutive equations of composite
Open Elective	Composite Materials	materials and understand mechanical behavior
		at micro and macro levels.
		CO3: Determine stresses and strains relation in
		composites materials.
		At the end of this course, each student should be
		able to:
		CO1: Apply the knowledge about the operations of
		Waste to Energy Plants.
Open Elective	Energy from Waste	CO2: Analyse the various aspects of Waste to Energy
open Elective	Lifergy noin waste	Management Systems.
		CO3: Carry out Techno-economic feasibility for
		Waste to Energy Plants.
		CO4: Apply the knowledge in planning and
		operations of Waste to Energy plants.